◎正当な理由による書き込みの削除について:      生島英之とみられる方へ:

分からない問題はここに書いてね426 [無断転載禁止]©2ch.net ->画像>62枚


動画、画像抽出 || この掲示板へ 類似スレ 掲示板一覧 人気スレ 動画人気順

このスレへの固定リンク: http://5chb.net/r/math/1493648300/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

1132人目の素数さん2017/05/01(月) 23:18:20.34ID:W+mdQGfq
さあ、今日も1日頑張ろう★☆

前スレ
分からない問題はここに書いてね425 [無断転載禁止]©2ch.net
http://rio2016.2ch.net/test/read.cgi/math/1488688413/

2132人目の素数さん2017/05/01(月) 23:49:32.88ID:YxpbACRT
削除依頼を出しました

3132人目の素数さん2017/05/02(火) 00:33:23.98ID:qKXdxeWd
ここは分からない問題を書くスレです。
お願いごとをするスレでも分からない問題に答えてもらえるスレでも
分からないんですねと念押しするスレでも本をdisるスレでもありません。

4132人目の素数さん2017/05/02(火) 21:35:45.90ID:0sqK0jsE
有理数体Qを集合 A, Bに切断した場合、「A に上限がなく、B にも下限がない」
ことはあり得ますか?

「A に最大元がなく、B にも最小元がない」ことはあり得るようですが、上限と下限は
存在するのでしょうか?

5132人目の素数さん2017/05/02(火) 22:07:07.85ID:0v+wBx8S
>>4
A={x∈Q|x^2<2, x>0}
B={x∈Q|x^2>2, x>0}
を考えればいい

6132人目の素数さん2017/05/02(火) 23:49:37.81ID:0sqK0jsE
>>5
その場合だと無理数である√2を持ち出せば、
Aの上限は√2で、Bの下限は√2でしょうか?
ということは上限と下限は存在することになりますね。

762017/05/03(水) 00:43:16.26ID:Td3vOFaX
調べてみましたが、有界であっても上限と下限が存在しないことがあり得るようです。
しかしそれを認めると納得できないことがあります。

有界な単調数列は収束するという定理がありますが、この定理は正しいのですか?
この定理を証明する際に、有界だから上限と下限が存在するという定理を利用しています。

ところが有界だとしても上限と下限が存在するとは限らないので、おかしくないですか?

8132人目の素数さん2017/05/03(水) 00:43:32.32ID:xoh/wl67
>>6
そうなるね
それによって実数√2というものを定義するというのがデデキントの切断

9132人目の素数さん2017/05/03(水) 00:55:21.03ID:yJO/22EG
実数上で考えれば、有界な集合には常に上限と下限が存在する
有理数上ではその限りではない

10132人目の素数さん2017/05/03(水) 03:32:57.86ID:rug20sDU
>>6
Q内には上限も下限もない

1162017/05/03(水) 11:49:36.86ID:Td3vOFaX
>>9 >>10
ありがとうございます。つまり有理数のみで構成される集合においても、
有界ならば、実数上で考えれば常に上限と下限が存在するという理解でいいですか?

例えば数列Xn=1/nでは、Xnの各項を要素とする集合は有理数のみで構成されています。
この場合でも、実数上で考えれば上限と下限が存在するから
「有界な単調数列は収束する」という定理を適用できますよね?

12132人目の素数さん2017/05/03(水) 12:25:30.12ID:xoh/wl67
>>11
数列の極限は、どの空間で考えているかが大事
「有界な単調数列は収束する」という定理は正確には

「実数体における有界な単調数列は、ある実数に収束する」

で、実数の連続性の公理(>>9)から導かれる。
もちろんQ⊂Rなので、
有理数のみからなる有界な単調数列でも数の範囲を実数で考えれば極限をもつ

13132人目の素数さん2017/05/03(水) 13:20:54.94ID:ouBxIZrc
定理の前提条件を読まない奴が多いな

14132人目の素数さん2017/05/03(水) 14:34:48.96ID:spX3GUKI
http://www.rokakuho.co.jp/

微分積分学 第2巻 改訂新編
藤原松三郎 著
浦川 肇・木 泉・藤原毅夫 編著
A5/640頁 本体価格7500円+税
ISBN:978-4-7536-0164-6

15132人目の素数さん2017/05/03(水) 15:14:51.96ID:LDNbVluM
質問者が何が分かっていないか考えずに回答するアホが多いこと

16132人目の素数さん2017/05/03(水) 15:19:51.28ID:mPAd3htD
質問者もお客様気分ではいけないよ
口開けて待ってるだけでなく、適宜質問するなりして自ら理解を深めるよう努めないとね

17132人目の素数さん2017/05/03(水) 18:23:43.18ID:lKdnOPia
爺もやたら質問に食いついて回答しなように、特に後藤爺さん

18132人目の素数さん2017/05/04(木) 00:35:15.10ID:FWegUOt0
みんな答えてやる(嶋田久作)

19132人目の素数さん2017/05/04(木) 00:39:43.10ID:oELaZzYF
dy/dx=2x-3y+1/x-2y
これの一般解てどうやって求めるんや...
微分方程式まったく分からねぇwww

20132人目の素数さん2017/05/04(木) 11:15:22.14ID:0gPaOSdi
誰も餌に食いつかない

21132人目の素数さん2017/05/04(木) 12:22:16.29ID:g63XrmdZ
微分方程式以前だな

22132人目の素数さん2017/05/04(木) 12:57:20.41ID:UghJsB0b
松坂君の区別ができずに他人に?み付く馬鹿ビッパー

23132人目の素数さん2017/05/04(木) 13:04:33.02ID:/858uxqo
下のページに乗っている問題が分からないんですが…
https//:note.chiebukuro.yahoo.co.jp/detail/n251985
誰か解説お願いします
無能な中坊なもんでわかりませんでした

24132人目の素数さん2017/05/04(木) 13:44:48.40ID:FWegUOt0
転載の転載をリンク一発でですか...
そういうのは、どうかなあ。
と、言いつつ答えてみる。

高校生以上なら、何も考えずに座標計算で
あっさり解けてしまうので、初等幾何で行きましょう。

直線ABとCDの交点をF、
ADとFOの交点をP、
BCとFOの交点をQ、
線分ABの中点をMと置く。

△FAPと△FBQの相似からFA,FQの長さが出て、
△FBQと△FOMの相似からOMの長さが出る。
△AOMで三平方の定理からOAの長さが求まる。

25132人目の素数さん2017/05/04(木) 13:48:38.78ID:/858uxqo
すみません…
解説ありがとうございます

26132人目の素数さん2017/05/04(木) 17:17:42.51ID:tkL7uDX5
lim[n→∞](1+1/n)^nが収束することを示せという問題があります。
解説を読めば書いてあることは理解できるのですが、どうすれば証明をするための
発想ができますか?

例えばXn=(1+1/n)^nが単調増加であることを示すために二項定理を用いて

Xn=1+1+(1-1/n)/2!+(1-1/n)*(1-2/n)/3!+・・・+(1-1/n)*(1-2/n)*・・・*(1-(n-1)/n)/n!

Xn+1=1+1+{1-1/(n+1)}/2!+{1-1/(n+1)}*{1-2/(n+1)}/3!+・・・+{1-1/(n+1)}*{1-2/(n+1)}*・・・*{1-(n-1)/(n+1)}/n!

展開をし、各項を比較してXn+1>Xnであると導いてます。

またXnが有界であることを示すために、

Xn=1+1+1/2!+1/3!+・・・+1/n!<1+1+1/2+1/2^2+・・・+1/2^n<3

Xnが等比数列の和よりも小さくなることを利用しています。


最初は解説を読まずに自力で解こうとしたのですが無理でした。
二項定理を用いたり、等比数列の和を持ち出す発想が出てこないのです。
発想ができるできないの差は天才と凡人の差なのでしょうか?

27132人目の素数さん2017/05/04(木) 17:20:02.48ID:J1QDhu0S
そや

28132人目の素数さん2017/05/04(木) 18:07:50.49ID:VdMpCg8l
全くの自力で発想できるのは相当センスがないと無理
ふつうは演習でそういう手法があることを知って会得する
要するに経験不足

29132人目の素数さん2017/05/04(木) 18:20:15.75ID:8+G1xSOk
12回勝つか3回負けるまで続くゲームがあるとする。
勝率x%の場合の平均勝数yの式を教えてください

30132人目の素数さん2017/05/04(木) 18:51:32.86ID:gjudHFsq
x^2+y^2=1のときx=cosθ y=sinθとなるようなθが存在することを示すにはどうするんですか?

31132人目の素数さん2017/05/04(木) 19:32:51.34ID:gjudHFsq
(x,y)->0のときf(x,y)=2xy(y^2-x^4)/(x^4+y^2)^2はどうなるか?

お願いします。

32132人目の素数さん2017/05/04(木) 20:36:17.41ID:zlLn+b7n
こちらこそお願いします

33美魔女2017/05/04(木) 21:07:39.98ID:AKzt24yo
哲学板最強の美魔女です👸宜しくお願いいたします✨

34132人目の素数さん2017/05/04(木) 21:49:35.88ID:aMWEbP9B
>>29
Σ[k=0,2]12(x/100)C[11+k,k](x/100)^11*(1-x/100)^k
+Σ[k=0,11]k(1-x/100)C[k+2,2](x/100)^k*(1-x/100)^2

35132人目の素数さん2017/05/04(木) 23:14:45.70ID:gLT2D8g+
>>31
y= kx として
f(x, k x)= 2 k(k^2-x^2)/(k^2+x^2)^2
(a) 0 if k= +/-x
  (b) -2/k if x->0

36132人目の素数さん2017/05/05(金) 00:56:28.78ID:R8CMOeV1
惜しい。
lim[(x,y)→(0,0)]f(x,y)=a が収束するなら
lim[x→0]f(x,kx)=a となるのだが、
k≠0, lim[x→0]f(x,kx)=2/k が一定値でないことから
lim[(x,y)→(0,0)]f(x,y) は発散。
それでいいんだけど、
(a)は意味不明だし、
肝心の(b)は微妙に違っている。

37132人目の素数さん2017/05/05(金) 09:19:05.18ID:pbTuc2Ci
f(x, y) = y (x ≠ 0)
f(x, y) = 0 ( x = 0)

↑の関数は原点での微分可能性を調べよ。

38132人目の素数さん2017/05/05(金) 11:16:47.51ID:pbTuc2Ci
>>37

の答えは、「f は原点で微分可能」です。

39132人目の素数さん2017/05/05(金) 11:53:20.01ID:el1m0pvn
>>37
y=0以外で(x.y)=(0,0)において不連続だから微分不可能。
y=0なら可能

40132人目の素数さん2017/05/05(金) 11:55:33.29ID:el1m0pvn
>>39
勘違いしてた
できるわ

41132人目の素数さん2017/05/05(金) 13:46:57.79ID:vFzE5uGm
>>38
斜め方向の微分係数≠0だが?

42132人目の素数さん2017/05/05(金) 13:47:06.99ID:R8CMOeV1
>>37-40
微分不能。
f(x,y) が (x,y)=(0,0) で微分可能とは
f(x,y) = f(0,0) + ax + by + h(x,y),
lim[(x,y)→(0,0)]h(x,y) = 0
と書ける a,b,h(x,y) が存在することだが、
f(x,y)=y (x≠0) より f(0,0)=0, a=0, b=1
f(x,y) = y + h(x,y) となって、
f(x,y)=0 (x=0) と一致しない。

f(x,y) は (x,y)=(0,0) では連続だが
(x,y)=(0,0) の近傍で連続でないから、このことが
f(x,y) が (x,y)=(0,0) で微分可能なことに反している。

43132人目の素数さん2017/05/05(金) 13:47:08.06ID:ZWpAiN6T
>>34
ありがとうございます
でもどうやって平均勝数出せばいいのかがわからない・・・

44132人目の素数さん2017/05/05(金) 14:01:06.08ID:pbTuc2Ci
>>37

微分可能です。

よく考えてみてください。

45132人目の素数さん2017/05/05(金) 14:02:46.21ID:pbTuc2Ci
[0 0] が微分になります。

46132人目の素数さん2017/05/05(金) 14:06:06.61ID:R8CMOeV1
>>29
引き分けは無いとする。
nゲーム行われたと置くと、
x/100=12/n または x/100=1-3/n。
これを満たす自然数 n が存在しない x は
実現しないので、対応する y も無い。
実現する x に対しては、
n=1200/x または n=300/(100-x) で
2通りの n がありえる。
それぞれの n について、勝数は
y=nx/100=12 または
y=nx/100=3x/(100-x)。
どちらの y かは、12回勝って終わったか
3回負けて終わったかで決まる。

47132人目の素数さん2017/05/05(金) 14:44:05.91ID:R8CMOeV1
そういう問題でもないか。
確率 q=x/100 で勝つ賭けに
12回勝つか3回負けたら終了とする。

勝って終わるのは
11勝m敗(m=0,1,2)から勝った場合で、
そのとき勝数は12。
負けて終わるのは
k勝2敗(k=0,1,…,11)から負けた場合で、
そのとき勝ち数k。

それぞれの起こる確率が
勝ち終わり: f(m) = {(11+m)C11}(q^11)(1-q)^m・q
負け終わり: g(k) = {(k+2)Ck}(q^k)(1-q)^2・(1-q)
だから、勝数の平均は
y = Σ12・f(m) + Σk・g(k)
= Σ[m=0…2] 12{(11+m)C11}(q^12)(1-q)^m
+ Σ[k=0…11] k{(k+2)Ck}(q^k)(1-q)^3
= (12/11!)(q^12) Σ[m=0…2] {(m+11)P11}(1-q)^m
+ (1/2)(1-q)^3 Σ[k=0…11] {(k+2)P3}(q^k).

式がこれ以上簡単になる気はしないから、
2個のΣの計15個の項を計算してyを出すしかないでしょう。
あれ、結局>>34と同じか。

48132人目の素数さん2017/05/05(金) 15:19:30.99ID:SwFJNTIX
ID:pbTuc2Ciは偏微分と微分の区別がついていないですね。

49132人目の素数さん2017/05/05(金) 16:00:04.96ID:wXM0FIwr
>>48

T11={0}xR
T21={R^2-{0}xR}

T11 U T21 において {0,0}の近傍で微分を計算せよ

50なんかおかしいのかな?2017/05/05(金) 16:06:43.08ID:wXM0FIwr
微分すると
0 in T11
1 in T21

T21では全微分=1

51132人目の素数さん2017/05/05(金) 16:30:58.82ID:sa1Mhn8I
ある店で赤ワイン4本と白ワイン5本のセットを1万円で、赤ワイン2本と白ワイン3本を6千円で販売した。
2種類のセットの売り上げは50万円で、売れた赤ワインの本数は180本だった。
売れたセットの数の合計はいくらか
これの考え方をお願いします。

52132人目の素数さん2017/05/05(金) 16:58:51.64ID:pbTuc2Ci
>>37

∂/∂x f(0, 0) = lim [f(h, 0) - f(0, 0)] / h = lim f(h, 0) / h = lim 0 / h = 0
∂/∂y f(0, 0) = lim [f(0, k) - f(0, 0)] / k = lim f(0, k) / k = lim 0 / k = 0

f(x, y) が (0, 0) で微分可能であるならば、微分係数 Df(0, 0) は

Df(0, 0) = [∂/∂x f(0, 0) ∂/∂y f(0, 0)] = [0 0]

でなければならない。

f(h, k) - f(0, 0) - Df(0, 0)*(h, k)^T = f(h, k) - 0 - [0 0]*(h, k)^T = f(h, k) = (1)

(1) = k (h ≠ 0)
(1) = 0 (h = 0)

|f(h, k) - f(0, 0) - Df(0, 0)*(h, k)^T| / sqrt(h^2 + k^2)
=
|f(h, k)| / sqrt(h^2 + k^2)
=
(2)

h = 0 のとき、

(2) = 0

h ≠ 0 のとき、

(2) = |k| / sqrt(h^2 + k^2) → 0 (k → 0)

よって、

f(x, y) は (0, 0) で微分可能であり、微分係数は Df(0, 0) = [0 0] である。

53132人目の素数さん2017/05/05(金) 17:23:34.59ID:SwFJNTIX
>>52
>f(x, y) が (0, 0) で微分可能であるならば、

> h ≠ 0 のとき、(2) = |k| / sqrt(h^2 + k^2) → 0 (k → 0)

この2箇所が間違いですね。
特に後半は、h ≠ 0を固定してk → 0を考えても微分可能とはいえません。
lim_{h→0, k→0} |k|/sqrt(h^2 + k^2) は不定、とするのが正しいです。

>>51
連立方程式を使って良いのなら簡単です。

54132人目の素数さん2017/05/05(金) 19:42:40.09ID:sa1Mhn8I
>>53
連立方程式だとどう立てればいいのでしょうか?

55132人目の素数さん2017/05/05(金) 20:10:13.69ID:SwFJNTIX
>>54
赤ワイン4本と白ワイン5本のセットがxセット,赤ワイン2本と白ワイン3本がyセット売れたとします。
2種類のセットの売り上げは50万円なので、1*x+0.6*y=50。
売れた赤ワインの本数は180本だったので、4x+2y=180
これを解いてx=20,y=50。
売れたセットの数の合計はx+y=70。

56132人目の素数さん2017/05/05(金) 20:46:39.51ID:sa1Mhn8I
>>55
ありがとうございます!

57132人目の素数さん2017/05/06(土) 00:05:31.39ID:+DPWLVWc
>>53
でしょ? だから>>42だよ。

58132人目の素数さん2017/05/06(土) 02:11:55.37ID:RPUZl3L7
53 名前:132人目の素数さん 2017/05/05(金) 17:23:34.59 ID:SwFJNTIX
>>52
>f(x, y) が (0, 0) で微分可能であるならば、

> h ≠ 0 のとき、(2) = |k| / sqrt(h^2 + k^2) → 0 (k → 0)

この2箇所が間違いですね。

形式論理では、”微分可能であるならば”、OK です。 なにをいってもいい。、

ところで微分可能性のていぎですが

T11={0}xR で微分可能なら 0
T21={R^2-{0}xR}で微分可能なら 1

T11 U T21 において (0,0)では近傍が取れない。

59てすと2017/05/06(土) 04:38:34.56ID:+DPWLVWc
>>58
T11={0}xR で微分可能なら「何が」0
T21={R^2-{0}xR} で微分可能なら「何が」1
になると言いたいのかを書き出してみれば、
>>53への反論になっていないことが判ると思うよ。

60132人目の素数さん2017/05/06(土) 07:30:30.12ID:cco5jDKU
>>53
>ところで微分可能性のていぎですが
>T11={0}xR で微分可能なら 0
>T21={R^2-{0}xR}で微分可能なら 1
>T11 U T21 において (0,0)では近傍が取れない。

全く意味不明。微分可能性の定義になっていない。
我流の定義を使いたいのかもしれないが、
あなたの「微分可能性の定義」を明確にかいてほしい。

61132人目の素数さん2017/05/06(土) 07:32:00.72ID:cco5jDKU
訂正。
>>53 ではなくて >>58だった。

62132人目の素数さん2017/05/06(土) 08:46:30.01ID:9LejwzyZ
An airplane is flying near a radar tower. At the instant it is exactly 3 miles
due west of the tower, it is 4 miles high and flying with a ground speed of 450 mph
and climbing at a rate of 5 mph. If at that instant it is flying

(a) due east,
(b) northeast,

at what rate is it approaching the radar tower at that instant?

63132人目の素数さん2017/05/06(土) 11:46:04.12ID:9LejwzyZ
解答はまだですか?

64132人目の素数さん2017/05/06(土) 14:14:28.16ID:+DPWLVWc
In (east,north,up) coordinate system, the distance from the
airplane to the radar tower is (3,0,-4) miles and the velocity
of the airplane is (a) (450,0,5) mph, (b) (450/√2,450/√2,5) mph.
The rate the airplane is approaching the tower is the component
of the velocity vector in the direction of the distance vector.
So, the rate is calculated as a innerproduct of the vectors above.
(a) (450,0,5)・(3,0,-4)/|(3,0,-4)| = 266 mph
(b) (450/√2,450/√2,5)・(3,0,-4)/|(3,0,-4)| = 135√2 - 4 mph
英語が合っとるかは、知らん。

65132人目の素数さん2017/05/06(土) 18:33:10.90ID:9LejwzyZ
>>64
ありがとうございました。

次の問題です。

U を R^n の開集合とする。
a ∈ U とする。
f, g を U から R^3 への写像とし、 a で微分可能であるとする。
f × g : U ∋ x → f(x) × g(x) ∈ R^3 とする。

(1) f × g は a で微分可能であることを示せ

(2)任意の v ∈ R^n に対して、

D(f × g)(a) v = Df(a) v × g(a) + f(a) × Dg(a) v

が成り立つことを示せ。

66132人目の素数さん2017/05/06(土) 20:48:06.89ID:9LejwzyZ
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

ヒントを出しておきます。

67132人目の素数さん2017/05/06(土) 21:02:23.85ID:mn39p/Jo
ヒント出せるなら分かってる問題だろ
スレタイ百万回読み直せ

68132人目の素数さん2017/05/06(土) 21:21:56.53ID:NIRANR3o
外積をレヴィ=チヴィタの記号を使って成分表示すれば自明
(f x g)_i = Σε_i_j_k・f_j・g_k (ここで i,j,k = 1..3)

両辺を微分して (ここで m = 1..n )
∂_m (f x g)_i = ∂_mΣε_i_j_k・f_j・g_k
=Σε_i_j_k・( ∂_m(f_j)・g_k + f_j・∂_m(g_k) )
=Σε_i_j_k・∂_m(f_j)・g_k + Σε_i_j_k・ f_j・∂_m(g_k)
=(∂_m(f) x g)_i + (f x ∂_m(g))_i

69132人目の素数さん2017/05/06(土) 22:18:46.86ID:9LejwzyZ
>>66

レヴィ=チヴィタの記号って何ですか?


以下は、標準的な解答です:

分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

70132人目の素数さん2017/05/06(土) 22:50:41.26ID:NIRANR3o
レビ・チビタの記号でもエディントンのイプシロンでも好きな呼び方をどうぞ
本当に知らなければググるように

ベクトル解析の証明ではレビ・チビタの記号を使う方が標準的だろ?

71132人目の素数さん2017/05/06(土) 22:54:40.39ID:XR66BEyK
松坂君に釣られるアホ

72132人目の素数さん2017/05/06(土) 23:14:53.42ID:NIRANR3o
いいんだよ
久しぶりに覗いたから釣りですら懐かしい

73132人目の素数さん2017/05/06(土) 23:20:28.92ID:2dcty+aa
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

これの1の(2)って解説間違えてるよね?
1/6が答えだと思ったんだけど...

74132人目の素数さん2017/05/06(土) 23:23:42.77ID:Eh0CnBup
荒らしにかまうのは荒らしだぞ

75132人目の素数さん2017/05/06(土) 23:23:43.94ID:uiDrrDCN
>>73
うん

76132人目の素数さん2017/05/06(土) 23:25:12.53ID:2dcty+aa
>>75
やっぱり?1/6であってるよね?

77132人目の素数さん2017/05/06(土) 23:31:36.85ID:uiDrrDCN
>>76
間違いなく 1/6 であってる。先生が寝ぼけてたんだろう。

それより、次の 「aが正の定数」って制限してる理由のほうが不思議だわ

78132人目の素数さん2017/05/07(日) 00:26:53.91ID:X5sZCrBh
どうせコピペ改変で作ってる問題だからだろ

79132人目の素数さん2017/05/07(日) 02:16:07.36ID:JngyUPHI
>>75
松坂君が友達なんだ

80132人目の素数さん2017/05/07(日) 02:24:52.14ID:zbxV3QSF
>>79
冷静に考えると君のやってることはカッコワルイぞ

81132人目の素数さん2017/05/07(日) 02:28:53.28ID:JngyUPHI
>>80
どうして

82132人目の素数さん2017/05/07(日) 02:41:19.70ID:zbxV3QSF
女の腐ったような奴

83132人目の素数さん2017/05/07(日) 02:41:59.52ID:JngyUPHI
アホか

84132人目の素数さん2017/05/07(日) 02:43:31.46ID:JngyUPHI
教科書の荒探ししかできないやつが好きか、爺さん

85132人目の素数さん2017/05/07(日) 02:49:00.12ID:JngyUPHI
松坂君と爺さんの厚い友情

86132人目の素数さん2017/05/07(日) 02:53:31.14ID:JngyUPHI
みぐるしい爺さん

87132人目の素数さん2017/05/07(日) 07:54:45.27ID:zbxV3QSF
「あいつウザイから無視しようぜ」

指摘されても気付かないようじゃお察しやね

88132人目の素数さん2017/05/07(日) 08:24:39.53ID:pBSWPm0m
志賀浩二著『ベクトル解析30講』に書かれているテンソル積の定義と同じ定義を採用している本を教えてください。

89132人目の素数さん2017/05/07(日) 09:44:51.00ID:aagugDXF
>>87
ごまかすな、荒らしだ

90132人目の素数さん2017/05/07(日) 10:02:27.28ID:gVVV8ac7
上に有界な集合Sに対してl=supSのとき、Xn∈S(n=1,2,..)でlim[n→∞]Xn=lとなる数列{Xn}が存在することを示せ
これをどうすればいいか教えてください

91132人目の素数さん2017/05/07(日) 10:43:20.53ID:YQwUi0ej
次の問題の詳しい解答をお教えください。

次の級数の極限を調べよ

1 Σ(n=1→∞)(-1)^n・log(1+1/n^2) 底はe

2 Σ(n=2→∞)(-1)^n・(1/logn) 底はe

92132人目の素数さん2017/05/07(日) 11:18:03.66ID:VZtlJTLH
あっ松坂君の友達(察し)

93132人目の素数さん2017/05/07(日) 13:26:10.94ID:pBSWPm0m
f : R^n - {0} → R とする。

x を R^n - {0} の任意の元とする。


任意の正の実数 t に対して

f(t*x) = t^k * f(x)



Df(x)*x = k*f(x)

94132人目の素数さん2017/05/07(日) 13:27:42.63ID:pBSWPm0m
>>93

「⇒」は簡単ですが、逆の解答をお願いします。

95132人目の素数さん2017/05/07(日) 14:03:37.18ID:ixqztYOW
>>90
上限というのは、それより小さい上界がない上界
だからl-1/nは上界じゃない。上界じゃないからXn>l-1/nとなるXn∈Sが存在する

96132人目の素数さん2017/05/07(日) 14:25:57.96ID:pBSWPm0m
>>93-94

あ、分かりました。
微分方程式を解けばいいんですね。

97132人目の素数さん2017/05/07(日) 15:01:17.84ID:pBSWPm0m
ちょっと思いついた問題ですが、

R^n ⊃ U を連結開集合とする。

U 内の任意の2点を P, Q とする。

P から座標軸に平行な線分上のみを通って、 Q に到達することは可能か?

この問題の解答をお願いします。

98132人目の素数さん2017/05/07(日) 15:06:08.44ID:pBSWPm0m
>>97

↓この問題を見ていて思いついた問題です。

分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

99132人目の素数さん2017/05/07(日) 16:03:58.48ID:0o8zlcTK
R^nの連結な開部分集合は弧状連結なのでPからQへのパスが存在する。
パスは[0 , 1]の連続像だからコンパクト。
またR^nは第二可算空間で開球からなる開基を持つので、
PからQへのパスは有限個の開球によって覆われる。
Pから初めて、開球の閉包とパスの続きの交わりの連結部分を、
端点は動かさず座標軸に平行なパスに置き換えることを、
Qに行き着くまで続けることができる。

100132人目の素数さん2017/05/07(日) 16:06:44.98ID:gasShyxk
>>97
ユークリッド空間R^n内では連結ならば弧状連結でもあるから
PとQを結ぶ曲線LがU内に存在する
L上の各点に対しての近傍をとればLを被覆できるけど、Lのコンパクト性より有限個を選べる
その近傍のなかをジグザグに進んでいけばいい

101132人目の素数さん2017/05/07(日) 16:47:15.89ID:pBSWPm0m
>>99-100

ありがとうございました。

>>98
の問題は1変数の平均値の定理から自明ということになりますね。

102132人目の素数さん2017/05/07(日) 17:38:43.64ID:uqKKX7EJ
あっ友達(お察し)

103132人目の素数さん2017/05/07(日) 23:26:37.73ID:YQwUi0ej
下記は絶対収束ですか 条件収束ですか
Σ(n=1→∞)(-1)^n・log(1+1/n^2)

104132人目の素数さん2017/05/07(日) 23:42:51.94ID:TpSPQln3
>>60

ようするに考えている位相空間はなにかということになります。
T0、T1,T2,。。。、T10
で微分をいかに受け止めるかです。

105132人目の素数さん2017/05/08(月) 00:07:38.96ID:mdulbz+D
>>104
そこまで一般化する話?
>>37を見れば、x,yの変域を何らかの位相体としたときの
全微分可能性以外に受け止めようがない気がするんだけど。

106132人目の素数さん2017/05/08(月) 00:15:11.61ID:kIwDpys/
>>103
ライプニッツの収束条件から絶対収束

107132人目の素数さん2017/05/08(月) 00:22:23.64ID:oMy3D1hw
あっ松坂君に釣られる(お察し)

108132人目の素数さん2017/05/08(月) 00:35:33.24ID:kmZQkan3
>>106
ありがとうございました。

109132人目の素数さん2017/05/08(月) 01:48:03.43ID:mdulbz+D
>>106
交代級数に関するライプニッツの定理は、単純収束。

x>0 のとき log(1+x) < x なので、
Σ[n=1→∞]log(1+1/n^2) ≦ Σ[n=1→∞]1/n^2
≦ 1 + Σ[n=2→∞]1/{n(n-1)}
= 1 + lim[m→∞]Σ[n=2→m]{1/(n-1) - 1/n}
= 1 + lim[m→∞]{1/1 - 1/m}
= 2.

絶対級数が有界なので、与式は絶対収束する。

110132人目の素数さん2017/05/08(月) 11:58:40.43ID:DhfoQIrB
U を R^3 の開集合
F を U から R^3 への写像
ψ を U から R への連続関数

とする。

F は力の場とし、 F(x) = ψ(x)*x が成り立っているとする。

F の場の中にある質量 m の質点の軌道を g(t) とする。

A(t) = g(t) × d/dt g(t) とおくと、

d/dt A(t)
=
d/dt g(t) × d/dt g(t) + g(t) × d^2/dt^2 g(t)
=
g(t) × d^2/dt^2 g(t)
=
g(t) × (1/m)*ψ(g(t))*g(t)
=
0

したがって

g(t) = A0(定ベクトル)

である。

A0 = 0 であるとき、 質点の奇跡は直線であることを証明せよ。

111132人目の素数さん2017/05/08(月) 12:13:35.48ID:wLNawVfP
無限和の積分と積分したものの無限和が一致しない例を教えて下さい

112132人目の素数さん2017/05/08(月) 12:42:16.34ID:AMpqBnjC
一様収束しない各点収束関数を持って来い

113132人目の素数さん2017/05/08(月) 12:51:53.92ID:wLNawVfP
>>112
関数列の極限なら一致しない自然な例が思いつきますが、無限級数の方は自然な例が思いつきません

114132人目の素数さん2017/05/08(月) 12:56:03.61ID:DhfoQIrB
>>110

訂正します:

A0 = 0 であるとき、 質点の軌跡は直線に含まれることを証明せよ。

115132人目の素数さん2017/05/08(月) 13:10:14.57ID:3lPZATfr
もっと大きな訂正があるんじゃないか?

116132人目の素数さん2017/05/08(月) 13:19:00.30ID:DhfoQIrB
>>110

分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

↑この why? という箇所です。

117132人目の素数さん2017/05/08(月) 14:39:53.49ID:mdulbz+D
(d/dt)A(t) = 0 の後に来るのは、
「g(t) = A0(定ベクトル)」じゃなくて
A(t) = A0(定ベクトル) でしょ?

その A0 が 0 なら、
g(t) × (d/dt)g(t) = 0 だから
g(t) // (d/dt)g(t)。
位置ベクトルの方向に進むんだから
g(t) が直線上にあるのは自明だが、

敢えて示すとすれば、
(d/dt)g(t) = f(t)g(t) となる f:R→R を置いて
成分毎に微分方程式を解く。その結果、
g(t) = {e^∫[c,t]f(τ)dτ}g(c) // g(c) となる。
g(t) が定数でなければ g(c)≠0 となる c は在る。

118132人目の素数さん2017/05/08(月) 14:42:37.95ID:mdulbz+D
>>113
思いついた関数列 = その関数列の階差の部分和

119132人目の素数さん2017/05/08(月) 14:47:47.28ID:WMG9l7PB
漸化式
a1=1/2
an+1=μan(1-an)
1<μ<3のときlim(n→∞)an=1-1/μを示せ
4<μのときanはn→∞で収束しないことを示せ

120132人目の素数さん2017/05/08(月) 15:13:13.98ID:v0UijAiE
>>118
例えば有名な例で、面積1を保って原点に向かって尖っていくような関数列がありますがこれの階差をとった数列は簡単に表せなくないですか?
色々調べて思いつかないので具体的な関数を教えて頂きたいです

121132人目の素数さん2017/05/08(月) 16:11:30.20ID:kmZQkan3
>>109
>交代級数に関するライプニッツの定理は、単純収束。

詳しい解答ありがとうございました。

122132人目の素数さん2017/05/08(月) 16:52:57.61ID:8HVB0rC8
標準正規分布表を用いて以下の確率を求めよ
⑴P(Z<1.20)
⑵P(-1.00<Z<1.20)

がよくわかりません…

123132人目の素数さん2017/05/08(月) 17:02:33.54ID:uz8fCzgK
俺も分からない

124132人目の素数さん2017/05/08(月) 18:08:01.79ID:kmZQkan3
Σ(n=2→∞)(-1)^n・(1/logn) (底はe) が収束することは分かるのですが、
絶対収束か条件収束かが分かりません。
絶対収束でないなら、それをどのようにして示せばよいのでしょうか?

125132人目の素数さん2017/05/08(月) 18:29:51.84ID:1JUcwiC4
懺悔式?

126132人目の素数さん2017/05/08(月) 18:32:21.15ID:uz8fCzgK

127132人目の素数さん2017/05/08(月) 19:49:31.33ID:mdulbz+D
>>124
Σ[n=2→∞]{(-1)^n}/log(n) の収束は、
>>106 の言うライプニッツ判定法で収束。
ただし、単純収束である。
絶対収束がどうかと言えば、与式の絶対級数
Σ[n=2→∞]1/log(n) が発散するので、
Σ[n=2→∞]{(-1)^n}/log(n) は条件収束となる。

絶対級数の発散は、前の例と同じ
x>0 で log(1+x)<x から、
Σ[n=2→∞]1/log(n) = Σ[m=1→∞]1/log(m+1)
≧ Σ[m=1→∞]1/m = +∞ のため、発散。

Σ[m=1→∞]1/m は、大変有名な発散級数で、
ライプニッツ判定法が単純収束であることの
代表例としても有名だ。
Σ[m=1→∞]{(-1)^m}/m = log(2),
Σ[m=1→∞]1/m = +∞.

Σ[m=1→∞]1/m = +∞ を示すには、
x>m で 1/m > 1/x であることから
両辺を m≦x≦m+1 で積分して 1/m > log(m+1)-log(m).
これを m=1,2,3,→∞ で総和して
Σ[m=1→∞]1/m ≧ lim[m→∞]log(m+1) = +∞.

Σ[n=1→∞]1/n^s の収束条件が s>1 であることも
押さえておくといい。興味があれば、
「ディリクレ級数 ゼータ関数」を google.

128132人目の素数さん2017/05/08(月) 20:07:42.88ID:mdulbz+D
言われたとおり、標準正規分布表を引こう。
数値計算して値を出すのは、
コンピュータをごりごり回して大変手間が掛かる。
標準正規分布表は、統計学の教科書の巻末付録に
載せてあることが多いし、ネットにもよく挙げてある。

Z〜N(0,1) に対して、
P(0≦Z≦x) の値を x に対して一覧表にしたもの↓
http://www.koka.ac.jp/morigiwa/sjs/standard_normal_distribution.htm
P(x≦Z) の値を x に対して一覧表にしたもの↓
https://www.google.co.jp/search?client=ubuntu&channel=fs&q=標準正規分布表&ie=utf-8&oe=utf-8&gfe_rd=cr&ei=rU0QWanGJ7PD8Aed6Ye4DQ
P(Z≦x) の値を x に対して一覧表にしたもの↓
http://www.biwako.shiga-u.ac.jp/sensei/mnaka/ut/normdisttab.html
など、いくつかのバリエーションがあるので、
入手した表の説明書きをよく読んで、間違えないように使おう。

よくある P(x≦Z) タイプの表を使うときには、
P(Z<1.20) = 1 - P(1.20≦Z),
P(-1.00<Z<1.20) = 1 - P(Z≦-1.00) - P(1.20≦Z) = 1 - P(1.00≦Z) - P(1.20≦Z)
などの変形を使う。表のタイプ毎に工夫する。

129132人目の素数さん2017/05/08(月) 22:21:25.43ID:kmZQkan3
>>127
大変ありがとうございました。

130132人目の素数さん2017/05/09(火) 00:10:13.03ID:1F24BQBu
>>128

大変ありがとうございます

131132人目の素数さん2017/05/09(火) 11:06:37.78ID:ChJRw/Nc
>>119
0<μ≦4なら0<an<1であることはわかったが、そこからどうやって
論理を展開していけばいいかわからない。

132132人目の素数さん2017/05/09(火) 12:00:57.08ID:oHzB8uPw
https://ja.wikipedia.org/wiki/ロジスティック写像
に出ている参考文献を見てみれば

133132人目の素数さん2017/05/09(火) 12:01:59.83ID:L1QQY3/W
「盗んだって言え。」と面と向かってものを言うことのできない
女々しいガキの声が聞こえてきてうるさい。

何が言いたいのか分からないが、誹謗しかできねーのかクズ。

ガキは黙ってろ。

134132人目の素数さん2017/05/10(水) 17:50:38.64ID:zp3ej9M0
>>117

ありがとうございました。

135132人目の素数さん2017/05/10(水) 17:53:46.34ID:zp3ej9M0
佐武一郎著『線型代数学(新装版)』を読んでいます。

p.203に「双一次型式」などと書かれています。

「双一次形式」が正しいですよね?

p.227の脚注に「Endmorphism algebra」などと書かれています。

「Endomorphism algebra」が正しいですよね?

136132人目の素数さん2017/05/10(水) 18:01:12.97ID:zp3ej9M0
佐武一郎著『線型代数学(新装版)』を読んでいます。

V と V^* の間に標準的な同型が存在しないと書かれています。

任意の2つの抽象的な n 次元ベクトル空間 V, W が与えられたときに、
それらの間に他に比べて特別な同型が存在しないというのは分かります。

V と V^* は互いに無関係なベクトル空間ではないですよね?

137132人目の素数さん2017/05/10(水) 18:04:47.14ID:zp3ej9M0
>>88

パッと見、スピヴァックの『多変数解析学』が志賀さんの本と似ているように思いました。

他にありますか?

138132人目の素数さん2017/05/10(水) 18:05:39.55ID:zp3ej9M0
微分積分学 第2巻 改訂新編
藤原 松三郎
https://www.amazon.co.jp/dp/4753601641

↑これってどうですか?

買った方がいいですか?

139132人目の素数さん2017/05/10(水) 18:13:44.32ID:zp3ej9M0
森毅著『ベクトル解析』を少し見てみたのですが、この本のどこがいいんですか?

「自己満足」にすぎない本ではないでしょうか?

140132人目の素数さん2017/05/10(水) 18:28:07.85ID:Y851nfQO
おまえのdisりが自己満足

141132人目の素数さん2017/05/10(水) 20:09:05.69ID:YFzDEt4j
型式でも形式でもどっちでも好きな方でおk

142132人目の素数さん2017/05/10(水) 23:15:33.21ID:h3EUagOE
>>141
"form" は「形式」でしかありえないだろ。
今どきの学生だと、平気で「双線形型式」とか書きそうだが。

>>139
自己満足目的でない通俗数学書を見たことがない。

>>138
買わないとね。立ち読みでは、ミスプリは見つけ難いだろう。

>>135
石原さとみが好きなのか嫌いなのか、まだ聞いてなかったな。

143132人目の素数さん2017/05/10(水) 23:31:13.86ID:h3EUagOE
>>136
そんなに短く切り取ると、原文の意図が判らない。

「V と V^* が同型ではない」とは言っていないようだから、
君が有限次元を持ち込んだことが間違いなのではなかろう。

「標準的な」同型が存在しないというのは、
> 任意の2つの抽象的な n 次元ベクトル空間 V, W が与えられたときに、
> それらの間に他に比べて特別な同型が存在しないというのは分かります。
の「特別な」と同意でよいのかもしれない。それなら意味は通る気がする。
ほんとうにそうかを確認するには、出典の前後の文章が必要になる。

案外、単にその V に内積が定義されていない
とかいうつまらない話なのかもしれない。

144132人目の素数さん2017/05/10(水) 23:36:14.29ID:TAtL7/On
荒らしをかまう荒らし

145132人目の素数さん2017/05/11(木) 07:28:08.76ID:04yDQlnq
マイケル・スピヴァックの『多変数解析学』のテンソルの説明は分かりやすいですね。

スピヴァックは、1965年に『Calculus on Manifolds』を出版していますね。

スピヴァックは、1940年生まれですから、25歳か24歳のときに出版しているんですね。

書いたのはそれよりも前ということになりますね。

146132人目の素数さん2017/05/11(木) 09:49:24.80ID:04yDQlnq
スピヴァックの『多変数解析学』を読んでいます。

↓交代テンソルについてですが、

分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

↑の赤い線を引いたところを見てください。
結果としては正しいですが、おかしいですよね。

分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

↑こう書くべきですよね。

147132人目の素数さん2017/05/11(木) 10:04:36.27ID:04yDQlnq
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

↑の赤い線を引いた等式は自明じゃないですよね?

148132人目の素数さん2017/05/11(木) 12:27:38.57ID:tVG4TF6q
>>146
>>147
まだ理解もできない本にケチつけてるおまえの頭が一番おかしいですねwwwww

149132人目の素数さん2017/05/11(木) 12:32:28.27ID:fkgl/AO1
>>146 「べき」てのが
どういう意図だか判らんが、、、

τ(S_k) = (S_k)τ = S_k だから、
Alt(T) を Σ[σ'∈S_k] で書くとき
σ' = τσ で作っても
σ' = στ で作っても
展開した式に違いは無いよ。
単に趣味の問題。

150132人目の素数さん2017/05/11(木) 12:45:29.65ID:tVG4TF6q
Wとか挟んでてステップ数が増えて逆にややこしいしwwwwwwwwww
vσ、vσ′の方が簡素でわかりやすいと思いますwwwwwwwwwwwww

151132人目の素数さん2017/05/11(木) 13:22:03.92ID:fkgl/AO1
>>147
赤線部分は、左ページの Alt の定義式で
Alt(T)(v_1,...,v_j,...,v_i,...,V_k)
を展開したものだから、自明としか。

Spivakのは、
Alt(T)(v) def= (1/k!)Σ[σ∈S_k](sgn σ)T(σv)
より
Alt(T)(τv) = (1/k!)Σ[σ∈S_k](sgn σ)T(στv)
= (1/k!)Σ[σ'∈S_k](sgn σ'τ)T(σ'v)        ;σ'=στ
= (1/k!)Σ[σ'∈S_k]-(sgn σ')T(σ'v)
= -Alt(T)(v).
で素直。

君のは、
Alt(T)(τv) = Alt(T)(w)        ;w=τv    
= (1/k!)Σ[σ∈S_k](sgn σ)T(σw)        ←[1]
= (1/k!)Σ[σ∈S_k](sgn σ)T(τσv)        ←[2]
= (1/k!)Σ[σ∈S_k]-(sgn τσ)T(τσv)
= -Alt(T)(v).                ;σ''=τσ
だから、むしろ
[1]から[2]への式変形で
総和変数 σ を置き換えたこと (στv≠τσv) を
説明したほうが親切。

152132人目の素数さん2017/05/11(木) 13:45:37.01ID:efMsoc9s
>>147
>>146
>>151
>>149
ここでやってね

マイケル・スピヴァック著『多変数解析学』を読む。【Michael Spivak】 [無断転載禁止]©2ch.net
http://rio2016.2ch.net/test/read.cgi/math/1494457357/

153132人目の素数さん2017/05/11(木) 14:52:44.75ID:04yDQlnq
>>151

>赤線部分は、左ページの Alt の定義式で
>Alt(T)(v_1,...,v_j,...,v_i,...,V_k)
>を展開したものだから、自明としか。

赤線部分は、Alt の定義式ではないと思います。
左から i 番目に v_j があり、左から j 番目に v_i があります。

154132人目の素数さん2017/05/11(木) 15:05:24.78ID:fkgl/AO1
Alt の定義式で Alt(T)(v_1,...,v_j,...,v_i,...,V_k) を展開したもの
と書いたよ?
Alt(T)(v) def= (1/k!)Σ[σ∈S_k](sgn σ)T(σv) より
Alt(T)(τv) = (1/k!)Σ[σ∈S_k](sgn σ)T(στv)。

155132人目の素数さん2017/05/11(木) 15:45:30.71ID:fkgl/AO1
v の代入で混乱するかねえ。
関数 f を f(x) = a/(1-x) と定義するとき、
f(2x) = a/(1-2x) と書いたら、君は混乱する?
f(2y) = a/(1-2y) じゃないと不親切かね。

それよりも、
Σ[k=0...n]ar^k = Σ[k=0...n](ar^n)(1/r)^k は
Σ[k=0...n]ar^k = Σ[k'=0...n](ar^n)(1/r)^k' と
書いたほうが良いように思う。

156132人目の素数さん2017/05/11(木) 21:07:59.96ID:Qi/tEx19
定積分をかじった方なら
簡単すぎることかと恐縮なのですが、
k*∫[0~0.5](2x+1)dx = 1のときのkの値を
教えてください。

157132人目の素数さん2017/05/11(木) 21:31:10.47ID:e66Vw3d0
定積分は齧れません

158132人目の素数さん2017/05/11(木) 22:51:52.43ID:nxNf5d7w
>>156
∫[0~0.5](2x+1)dxは計算できるのかい?

159132人目の素数さん2017/05/11(木) 22:56:25.10ID:mexoF0Fs
バウムクーヘンは齧れます

160132人目の素数さん2017/05/11(木) 22:58:48.89ID:FSRXRKqG
そしてデブになります

161132人目の素数さん2017/05/12(金) 03:49:39.68ID:f7MXvrqY
p>0, q>0は定数で、C∞級関数f : R(実数)→R(実数)、が任意の実数xについて次を満たす。
|f(x)|≦p、|f '' (x)|≦q
このとき |f ' (x)|≦√(2pq) が成り立つことを示せ。(xは任意の実数)

ヒントとして、
@テイラー展開 と
A「g(t) = m/t + nt の最小値を求めよ。ただし、定数m>0,n>0で関数g : (0:∞)→R(実数)」
 という問題が関係してるよと言われました。
考えても分からず困ってます。よろしくお願いします。

162132人目の素数さん2017/05/12(金) 04:19:24.99ID:plpbGQV9
>>161
Aの最小値の形から容易に解法が類推できるじゃん

163132人目の素数さん2017/05/12(金) 04:48:20.23ID:f7MXvrqY
>>162
形が似てたから「できる!」って思ってやってみたらダメでした...

164132人目の素数さん2017/05/12(金) 05:01:21.28ID:plpbGQV9
>>163
できたところまで書いてみて

165132人目の素数さん2017/05/12(金) 05:20:57.16ID:f7MXvrqY
>>164
考えとしてはf(x)/x+xf''(x)(x≠0のとき)をテイラー展開した形に書いて、うまいこと変形してヒントの最小値の形にしようと思った。
できたのはテイラー展開の形にして、xの次数が同じ項同士でまとめたところまでで、その後の変形が分からない
そもそも最初が違ったりして...

166132人目の素数さん2017/05/12(金) 05:38:40.03ID:plpbGQV9
>>165
最初からだめっぽいな

aを任意に取って固定する。xを動かすとき、テイラー展開より
f(x)=f(a)+f '(a)(x−a)+f ''(θ)(x−a)^2 / 2 (θはxとaごとに決まる)
となるので、特にx≠aのときは

f '(a)=(f(x)−f(a))/(x−a)−f ''(θ)(x−a)/2

となる。よって

|f '(a)|≦ 2p /|x−a|+(q/2)|x−a|

となる。t=|x−a|と置けば、xを動かすとき
tは正の実数全体を動くので、Aより

|f '(a)|≦ 2√(pq)

となる。aは任意だから、任意のaでこれが成り立つ。

・・・と、ここまで書いて気づいたが、
これでは √(2pq) ではなく 2√(pq) にしかなっとらん
応用上は √(pq) の部分が本質的なので、定数項は 2 でも √2 でも
何の影響もないのだが、√2を捻出する方法は俺にも分からん

167132人目の素数さん2017/05/12(金) 05:58:50.78ID:f7MXvrqY
>>166
確かに2が根号の外だ
確認したけど問題のタイプミスはなかった...
最後の2ルート(pq)を勝手にルート2で割るわけにもいかないしー
とりあえずここまでありがとうこざいました

168◆2VB8wsVUoo 2017/05/12(金) 12:08:36.30ID:r71/Ca5N

169◆2VB8wsVUoo 2017/05/12(金) 12:08:56.92ID:r71/Ca5N

170◆2VB8wsVUoo 2017/05/12(金) 12:09:18.11ID:r71/Ca5N

171◆2VB8wsVUoo 2017/05/12(金) 12:09:39.23ID:r71/Ca5N

172◆2VB8wsVUoo 2017/05/12(金) 12:10:01.01ID:r71/Ca5N

173◆2VB8wsVUoo 2017/05/12(金) 12:10:22.98ID:r71/Ca5N

174◆2VB8wsVUoo 2017/05/12(金) 12:10:47.54ID:r71/Ca5N

175◆2VB8wsVUoo 2017/05/12(金) 12:11:13.37ID:r71/Ca5N

176◆2VB8wsVUoo 2017/05/12(金) 12:11:36.48ID:r71/Ca5N

177◆2VB8wsVUoo 2017/05/12(金) 12:11:58.21ID:r71/Ca5N

178132人目の素数さん2017/05/12(金) 12:23:56.69ID:TWAqsEz6
あるテキストに下記のように書いてありましたが、
--------------------------------------
数列{an} が有界であることを言いかえると,
n に無関係なある定数M が存在して,すべての自然数n に対してan ≦ M となること
--------------------------------------

an < M のときも有界であるといえますか?

179132人目の素数さん2017/05/12(金) 12:28:29.24ID:PbaztN0l
当たり前や

180132人目の素数さん2017/05/12(金) 13:30:09.54ID:TWAqsEz6
>>179
ありがとうございます。
確かに当り前ですよね。

181132人目の素数さん2017/05/12(金) 14:11:51.21ID:W/taOFEl
数Bの問題です
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚
ここまで解きました
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

ここから先がわからないので途中式をお願いします

182132人目の素数さん2017/05/12(金) 14:26:18.79ID:IJa+TJNX
wolframalphaに聞け
課金すれば途中式も出る

183132人目の素数さん2017/05/12(金) 14:30:37.93ID:R3/lU6+i
高校生のスレで聞けよ

184132人目の素数さん2017/05/12(金) 14:35:45.81ID:CadjoQC6
てきとーにきょうつういんすうでくくりながらする
それでわからんかったらぜんてんかいしていんすうていりつかう

185132人目の素数さん2017/05/12(金) 14:40:30.88ID:R3/lU6+i
展開ができないと重症だな。公式は覚えたけれどか

186132人目の素数さん2017/05/12(金) 14:49:18.37ID:FaphGgDU
質問です。
「変量xのデータ 908.8 981.1 980.7 979.3の平均を、変量u=(x-980)/0.1を用いて計算せよ。」という問題なんですが、なぜ0.1で割らなければならないのか、どなたか教えて頂いてもよろしいですか?

187132人目の素数さん2017/05/12(金) 14:52:31.23ID:W/taOFEl
>>185
展開するやり方は教わっていません

188132人目の素数さん2017/05/12(金) 14:54:11.42ID:R3/lU6+i
難問だな

189132人目の素数さん2017/05/12(金) 14:55:02.46ID:R3/lU6+i
>>187
それじゃあきらめよう

190132人目の素数さん2017/05/12(金) 15:05:17.43ID:W/taOFEl
>>189
仮に展開したとしても4次式になるので人間の業では因数分解できないのでは?

191132人目の素数さん2017/05/12(金) 15:10:31.60ID:/+FIWqfM
どうでもいいけど因数分解しろとは書いてないが

192132人目の素数さん2017/05/12(金) 16:03:12.03ID:CadjoQC6
ひらがなでわざわざかいてるだろ

多項式の和の公式は共通因数がでやすい形になってるから、共通因数に注意して
多項式をまとめていけばそれなりにまとまるようになってる。
それが無理なら、全部展開して因数定理を使って頑張れってこと。

数学苦手だとほぼ100%この多項式の整理でひっかかるから学校でもちゃんと教えてくれるといいんだけどね。

193◆2VB8wsVUoo 2017/05/12(金) 17:30:54.16ID:r71/Ca5N

194◆2VB8wsVUoo 2017/05/12(金) 17:31:15.65ID:r71/Ca5N

195◆2VB8wsVUoo 2017/05/12(金) 17:31:17.14ID:r71/Ca5N

196◆2VB8wsVUoo 2017/05/12(金) 17:31:40.24ID:r71/Ca5N

197◆2VB8wsVUoo 2017/05/12(金) 17:32:01.00ID:r71/Ca5N

198◆2VB8wsVUoo 2017/05/12(金) 17:32:23.61ID:r71/Ca5N

199◆2VB8wsVUoo 2017/05/12(金) 17:32:46.51ID:r71/Ca5N

200◆2VB8wsVUoo 2017/05/12(金) 17:33:07.84ID:r71/Ca5N

201◆2VB8wsVUoo 2017/05/12(金) 17:33:27.27ID:r71/Ca5N

202◆2VB8wsVUoo 2017/05/12(金) 17:33:54.59ID:r71/Ca5N

203132人目の素数さん2017/05/12(金) 17:35:06.62ID:r1KfBQNS
大文字は行列です

(A×A)×A=(AA)A
だっけ?

204132人目の素数さん2017/05/12(金) 17:35:50.51ID:r1KfBQNS
めっちゃミスった
(A×A)×A=A×(A×A)

だっけ?

205132人目の素数さん2017/05/12(金) 17:36:49.84ID:r1KfBQNS
あ、せいほう行列です。

206132人目の素数さん2017/05/12(金) 17:44:25.45ID:ebNAjw85
世では算数のできない大学生というのが問題になっているらしいが
日本語のできない大学生というのもいるのだな

207132人目の素数さん2017/05/12(金) 17:51:20.48ID:IiAnsyqI
>>178
|a_n |<= M じゃなくて?

>>205
行列の積はもともと結合的だが、xはテンソル積か?

208◆2VB8wsVUoo 2017/05/12(金) 19:05:29.06ID:r71/Ca5N

209◆2VB8wsVUoo 2017/05/12(金) 19:05:53.62ID:r71/Ca5N

210◆2VB8wsVUoo 2017/05/12(金) 19:06:15.93ID:r71/Ca5N

211◆2VB8wsVUoo 2017/05/12(金) 19:06:42.17ID:r71/Ca5N

212◆2VB8wsVUoo 2017/05/12(金) 19:07:06.24ID:r71/Ca5N

213◆2VB8wsVUoo 2017/05/12(金) 19:07:33.87ID:r71/Ca5N

214◆2VB8wsVUoo 2017/05/12(金) 19:07:57.67ID:r71/Ca5N

215◆2VB8wsVUoo 2017/05/12(金) 19:08:21.97ID:r71/Ca5N

216◆2VB8wsVUoo 2017/05/12(金) 19:08:47.85ID:r71/Ca5N

217◆2VB8wsVUoo 2017/05/12(金) 19:09:12.63ID:r71/Ca5N

218132人目の素数さん2017/05/12(金) 20:46:12.20ID:NKSJroUP
>>181
合ってんのにな。後は、根性だけが足りないかな。

Σ[k=1..n](2k-1)(2k+3)k
= Σ[k=1..n](4k^3 + 4k^2 -3k)
= 4Σ[k=1..n]k^3 + 4Σ[k=1..n]k^2 - 3Σ[k=1..n]k
= 4{(1/2)n(n+1)}^2 + 4(1/6)n(n+1)(2n+1) - 3(1/2)n(n+1) ←公式
= (n^2)(n+1)^2 + (2/3)n(n+1)(2n+1) - (3/2)n(n+1)
= (1/6)n(n+1){6n(n+1) + 4(2n+1) - 9}
= (1/6)n(n+1)(6n^2+14n-5).
6n^2+14n-5が有理数係数で因数分解できないことは、
判別式が平方数でないことで判る。別に、因数分解しなくてもいいけど。

僕は子供の頃、Σ[k=1..n]k^2がどうしても覚えられなかった
ので、こうしていた。
Σ[k=1..n](2k-1)(2k+3)k
= Σ[k=1..n](4k^3 + 4k^2 - 3k)
= Σ[k=1..n]{4k(n+1)(k+2) - 8k(k+1) - 3k}
= 4Σ[k=1..n]k(n+1)(k+2) - 8Σ[k=1..n]k(k+1) - 3Σ[k=1..n]k
= 4(1/4)n(n+1)(n+2)(n+3) - 8(1/3)n(n+1)(n+2) - 3(1/2)n(n+1) ←公式
= n(n+1)(n+2)(n+3) - (8/3)n(n+1)(n+2) - (3/2)n(n+1)
= (1/6)n(n+1){6(n+2)(n+3) - 16(n+2) - 9}
= (1/6)n(n+1)(6n^2+14n-5).
どっちの公式がお好きですか?

219132人目の素数さん2017/05/12(金) 21:00:35.26ID:NKSJroUP
>>186
言われたとおりに、やってみればいいじゃん。
x = 908.8, 981.1, 980.7, 979.3 のとき、
u = (x-980)/0.1 = 88, 11, 7, -7 となって
平均(x) = 平均(980+0.1u) = 980 + 0.1平均(u)
から 平均(x) が求まる。
平均(u) = (88 + 11 + 7 - 7)/4 = 99/4 = 24.75
平均(x) = 980 + (0.1)(24.75) = 982.475

0.1 で割らなければいけない義理も
980 を引かなければならない責任も特に無いが、
平均(u) は計算が楽でしょう?という話。
こういうのが好きでなければ、黙々と
平均(x) = (908.8 + 981.1 + 980.7 + 979.3)/4
を計算したっていい。好きな方でやる。

220132人目の素数さん2017/05/12(金) 21:05:57.69ID:NKSJroUP
>>190
展開する前に、各項を因数分解して、共通因数を括り出す。
その後、括り出されなかった部分を展開して、また因数分解。
数Iの大事なとこだよ...って、>>192がもう書いてたか。

221132人目の素数さん2017/05/12(金) 23:58:06.84ID:0qvdE+jG
志村五郎著『数学をいかに使うか』を読んでいます。

なんかグラスマン代数のところで、おかしいところがありますね。

志村さんは、大丈夫なんでしょうか?

222132人目の素数さん2017/05/13(土) 00:01:48.46ID:dORwQj0x
グラスマン代数のある式の証明ですが、非常にうさんくさい証明をしています。

223132人目の素数さん2017/05/13(土) 00:03:17.51ID:dORwQj0x
本人はおそらく気の利いた証明をしているつもりなんだと思います。

224132人目の素数さん2017/05/13(土) 00:47:16.12ID:/Cd0OeGn
>>221-223
本人はおそらく気の利いたことを言ってるつもりなんだろうなあ。

225◆2VB8wsVUoo 2017/05/13(土) 03:12:14.73ID:n0gZs4p1

226◆2VB8wsVUoo 2017/05/13(土) 03:12:38.41ID:n0gZs4p1

227◆2VB8wsVUoo 2017/05/13(土) 03:13:05.91ID:n0gZs4p1

228◆2VB8wsVUoo 2017/05/13(土) 03:13:32.60ID:n0gZs4p1

229◆2VB8wsVUoo 2017/05/13(土) 03:13:57.88ID:n0gZs4p1

230◆2VB8wsVUoo 2017/05/13(土) 03:14:21.20ID:n0gZs4p1

231◆2VB8wsVUoo 2017/05/13(土) 03:14:43.95ID:n0gZs4p1

232◆2VB8wsVUoo 2017/05/13(土) 03:15:04.98ID:n0gZs4p1

233◆2VB8wsVUoo 2017/05/13(土) 03:15:26.39ID:n0gZs4p1

234◆2VB8wsVUoo 2017/05/13(土) 03:15:48.45ID:n0gZs4p1

235132人目の素数さん2017/05/13(土) 06:29:53.75ID:fWDxnYE4
相異なる4つの複素数を等差数列にも等比数列にもなるように並べることはできるか

236132人目の素数さん2017/05/13(土) 09:02:32.92ID:HG6CCjaX
なぜできると思ったのか

237132人目の素数さん2017/05/13(土) 09:52:13.94ID:/M/gjrsr
http://phoebe.bbspink.com/test/read.cgi/mobpink/1489982814/584

数学の問題風にいうと
5種類のカードのうち1枚を得られるくじがある
(5種類の間に排出率の差はない、排出率は同様に確からしい)
このくじを15回やったときにどれか1種でも5枚以上集まる確率が知りたい
ということです

238132人目の素数さん2017/05/13(土) 09:54:28.92ID:efDdGhQ9
>>222-223

分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

↑の1枚目の画像の赤線を引いたところが怪しすぎます。

239132人目の素数さん2017/05/13(土) 10:14:27.91ID:efDdGhQ9
>>238

志村さんの書き方だと、(3.11)は、 x_i に a_i_1*e_1 + … + a_i_n*e_n を代入した
結果そう書けるという説明ではなく、 ?^n V が1次元空間だからそう書けると
いう説明です。

240132人目の素数さん2017/05/13(土) 10:15:03.95ID:efDdGhQ9
>>238

志村さんの書き方だと、(3.11)は、 x_i に a_i_1*e_1 + … + a_i_n*e_n を代入し展開した
結果そう書けるという説明ではなく、 ?^n V が1次元空間だからそう書けるという説明
です。

241132人目の素数さん2017/05/13(土) 10:15:44.93ID:efDdGhQ9
>>238

志村さんの書き方だと、(3.11)は、 x_i に a_i_1*e_1 + … + a_i_n*e_n を代入し展開した
結果そう書けるという説明ではなく、 △^n V が1次元空間だからそう書けるという説明
です。

242132人目の素数さん2017/05/13(土) 10:18:20.94ID:efDdGhQ9
>>238

x_i に a_i_1*e_1 + … + a_i_n*e_n を代入し展開した
結果、(3.11)を得るという流れならば、志村さんの説明
でもいいと思います。

243◆2VB8wsVUoo 2017/05/13(土) 10:55:23.17ID:n0gZs4p1

244◆2VB8wsVUoo 2017/05/13(土) 10:55:48.34ID:n0gZs4p1

245◆2VB8wsVUoo 2017/05/13(土) 10:56:11.47ID:n0gZs4p1

246◆2VB8wsVUoo 2017/05/13(土) 10:56:39.53ID:n0gZs4p1

247◆2VB8wsVUoo 2017/05/13(土) 10:57:06.37ID:n0gZs4p1

248◆2VB8wsVUoo 2017/05/13(土) 10:57:33.46ID:n0gZs4p1

249◆2VB8wsVUoo 2017/05/13(土) 10:57:55.45ID:n0gZs4p1

250◆2VB8wsVUoo 2017/05/13(土) 10:58:20.98ID:n0gZs4p1

251◆2VB8wsVUoo 2017/05/13(土) 10:58:45.51ID:n0gZs4p1

252◆2VB8wsVUoo 2017/05/13(土) 10:59:11.25ID:n0gZs4p1

253132人目の素数さん2017/05/13(土) 13:01:33.57ID:GF3Hbdjl
よろしくお願いしました。
https://m.imgur.com/9TBLc8V

254132人目の素数さん2017/05/13(土) 13:02:10.15ID:GF3Hbdjl
よろしくお願いしました。
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

255132人目の素数さん2017/05/13(土) 13:22:48.23ID:1qshsFd/
>>236
証明できますか?

256132人目の素数さん2017/05/13(土) 13:27:15.46ID:HCQ77578
 
 独り言、
 放送大学の記号論理学の講義で撃沈したが、
 確かに論理学とは集合論に帰着され、すべての場合の網羅しないと、
 記号的に処理できないわけだ。
 
 集合 → リスト → LISP, Prolog, 関数型プログラミング → 第?世代の人工知能
 
 という理屈がぼんやり分かったかな。
 
 今のAIは違うな、確率論的に機械学習するから、論理学じゃない。
 

257132人目の素数さん2017/05/13(土) 13:38:26.37ID:gAxqsVhW
>>255
求める数列をa, ar, ar^2, ar^3とおく
このとき、前3項が等差数列になる必要がある
したがって2ar=a+ar^2
これを解いてa=0またはr=1を得る
いずれの場合も、相異なる4数という条件に反する

258132人目の素数さん2017/05/13(土) 14:05:31.15ID:nNc0Vs7W
むしろa^2=(a+d)(a-d)からd=0の方がすっきり

259132人目の素数さん2017/05/13(土) 14:07:40.61ID:AfdUZ0/4
>>256
スレチ

260132人目の素数さん2017/05/13(土) 14:34:41.33ID:msMgxiAy
ヘルプ

5人が座る長椅子が有る
12345
一人ひとりの制服バリエーションが3パターン存在する
誰が何処に並んでも良い

全通りを求める方法

どなたか、知りませんか

261132人目の素数さん2017/05/13(土) 15:07:53.79ID:a7xHHMII
マルチ

262132人目の素数さん2017/05/13(土) 15:14:16.68ID:ARu+wSZf
-2,1,4.
1,-2,4.

263132人目の素数さん2017/05/13(土) 16:05:42.60ID:cvOx7N7i
Rの部分集合の族
g={G⊂R|x∈Gならばε>0が存在し、[x-ε、x+ε]⊂G}
はRのユークリッド位相と一致していることを示せ。

という問題があるのですがまずどのあたりから切り込んでいけばいいのかわかりません。
どなたかご教示ください。

264132人目の素数さん2017/05/13(土) 16:25:42.65ID:JdDqe0sm
一致するか?

265132人目の素数さん2017/05/13(土) 16:46:20.20ID:1qshsFd/
>>257
1行目から2行目の論理に飛躍を感じます

書き方が悪かったです
等差数列をなす相異なる4つの複素数を等比数列をなすようにも並べ替えることはできるか?
という意味だったのですが

266132人目の素数さん2017/05/13(土) 17:05:50.80ID:byHCEuCb
>>255
等差数列なら複素平面上で等間隔に4点が並ぶ。
等比数列なら4点の偏角が等差数列になることが必要。
これらは両立しない。

267◆2VB8wsVUoo 2017/05/13(土) 17:55:02.11ID:n0gZs4p1

268◆2VB8wsVUoo 2017/05/13(土) 17:55:26.31ID:n0gZs4p1

269◆2VB8wsVUoo 2017/05/13(土) 17:55:50.88ID:n0gZs4p1

270◆2VB8wsVUoo 2017/05/13(土) 17:56:17.93ID:n0gZs4p1

271◆2VB8wsVUoo 2017/05/13(土) 17:56:46.22ID:n0gZs4p1

272◆2VB8wsVUoo 2017/05/13(土) 17:57:15.54ID:n0gZs4p1

273◆2VB8wsVUoo 2017/05/13(土) 17:57:44.49ID:n0gZs4p1

274◆2VB8wsVUoo 2017/05/13(土) 17:58:12.18ID:n0gZs4p1

275◆2VB8wsVUoo 2017/05/13(土) 17:58:36.31ID:n0gZs4p1

276◆2VB8wsVUoo 2017/05/13(土) 17:59:04.06ID:n0gZs4p1

277132人目の素数さん2017/05/13(土) 19:32:12.24ID:SLtYMLHl
>>265
2行目は1行目から演繹されるものじゃなくて問題文そのものでしょうに
求める数列(存在するとして)は等比数列になるんだから、それをa,ar,ar^2,ar^3とする(これが1行目)
で、求める数列は等差数列になるからその部分列a,ar,ar^2も等差数列になる(2行目)

もしかすると2行目から3行目のことかもしれん
それなら等差数列なんだからar^2-ar=ar-a(=公差d)
移項するだけ

278132人目の素数さん2017/05/13(土) 20:01:09.31ID:msMgxiAy
>>260
には、どうして誰も答えて紅の?

279132人目の素数さん2017/05/13(土) 20:06:26.80ID:efDdGhQ9
29160通りです。

280◆2VB8wsVUoo 2017/05/13(土) 20:56:11.21ID:n0gZs4p1

281132人目の素数さん2017/05/13(土) 20:56:23.15ID:/Cd0OeGn
>>278
何の「全通り」を求めるのか
最低限伝わる日本語で書かないからじゃないの?

282◆2VB8wsVUoo 2017/05/13(土) 20:56:37.97ID:n0gZs4p1

283◆2VB8wsVUoo 2017/05/13(土) 20:57:04.87ID:n0gZs4p1

284◆2VB8wsVUoo 2017/05/13(土) 20:57:34.11ID:n0gZs4p1

285◆2VB8wsVUoo 2017/05/13(土) 20:58:01.70ID:n0gZs4p1

286◆2VB8wsVUoo 2017/05/13(土) 20:58:24.21ID:n0gZs4p1

287◆2VB8wsVUoo 2017/05/13(土) 20:58:53.27ID:n0gZs4p1

288132人目の素数さん2017/05/13(土) 20:59:16.46ID:/Cd0OeGn
>>279
(5!)3^5 なら、そうだね。
はたして、そういう問題かね?

289◆2VB8wsVUoo 2017/05/13(土) 20:59:23.72ID:n0gZs4p1

290◆2VB8wsVUoo 2017/05/13(土) 20:59:53.02ID:n0gZs4p1

291◆2VB8wsVUoo 2017/05/13(土) 21:00:17.81ID:n0gZs4p1

292◆2VB8wsVUoo 2017/05/13(土) 21:00:47.78ID:n0gZs4p1

293◆2VB8wsVUoo 2017/05/13(土) 21:01:11.99ID:n0gZs4p1

294◆2VB8wsVUoo 2017/05/13(土) 21:01:40.17ID:n0gZs4p1

295◆2VB8wsVUoo 2017/05/13(土) 21:02:08.34ID:n0gZs4p1

296◆2VB8wsVUoo 2017/05/13(土) 21:02:35.66ID:n0gZs4p1

297◆2VB8wsVUoo 2017/05/13(土) 21:03:00.15ID:n0gZs4p1

298◆2VB8wsVUoo 2017/05/13(土) 21:03:29.74ID:n0gZs4p1

299132人目の素数さん2017/05/13(土) 21:04:37.94ID:1qshsFd/
>>277
等比数列の前三項がその順番で等差数列となる場合以外も考慮しなければならないと思うのですが
例えば、等比数列をa,ar,ar^2,ar^3とした時
等差数列(になるならばそれ)がa,ar^2,ar,ar^3となる場合などはどうするのでしょうか

300132人目の素数さん2017/05/13(土) 21:17:41.23ID:SLtYMLHl
>>299
教科書読も?

数列(a_n)と(b_n)が等しいとは全てのnでa_n=b_nとなること
つまり順序込みで全ての番号で同じ値ということ
並び替えた数列は元の数列とは異なる
例えば数列(1,2,3,4,…)において1と2を入れ替えた数列(2,1,3,4,…)は異なる数列を表す

……もしかして「ある等比数列(a_1,a_2,a_3,a_4)で、項を並び替えると等差数列になるようなもの(並び替えた数列は等比数列でなくてもよい)は存在するか?」ってこと?

301132人目の素数さん2017/05/13(土) 21:24:21.03ID:1qshsFd/
>>300
後者です。伝わりにくくてすみません

302132人目の素数さん2017/05/13(土) 22:19:46.89ID:vCREKqRV
>>260
多分3^5×5! のような気がするけど、何を数えればいいのかよくわからんからな

303132人目の素数さん2017/05/14(日) 00:32:27.33ID:maI03D8q
>>300
>>301さんの言う通りだと思うなあ。

304132人目の素数さん2017/05/14(日) 06:17:58.53ID:ILSg7sF0
そもそも >>235 の文章が悪いとしか

「相異なる4つの複素数を『等差数列にも等比数列にもなるように』並べることはできるか」

これだと
『等差数列にも等比数列にもなるような』並べ方
を指してしまう。

a-d, a, a+d, a+2d (d≠0)の並べ方を変えると等比数列になるとすると
初項×第4項 = 第2項×第3項なので
i) a(a-d) = (a+d)(a+2d)
ii) a(a+d) = (a-d)(a+2d)
iii) a(a+2d) = (a+d)(a-d)
のいずれかが成り立つ

ii) はd = 0 つまり解無し
i), iii) は d = -2a
すなわち 3a, a, -a, -3aの4数であり
相異なるという条件から a ≠ 0
等比数列の絶対値は、実数としての大小関係で並べると等比数列になるため

正項 |a|, |a|, 3|a|, 3|a|が等比数列ということになるが
そうはなっていないので

「等差数列を成す相異なる4つの複素数が
並べ方を変えると等比数列になる」事は無い

305132人目の素数さん2017/05/14(日) 07:28:47.99ID:UERycwtg
>>237
1-Σ[a,b,c,d,e<5,a+b+c+d+e=15]C[15,a]C[15-a,b]C[15-a-b,c]C[16-a-b-c,d](1/15)^5

306132人目の素数さん2017/05/14(日) 07:29:27.40ID:UERycwtg
>>305 訂正
1-Σ[a,b,c,d,e<5,a+b+c+d+e=15]C[15,a]C[15-a,b]C[15-a-b,c]C[15-a-b-c,d](1/15)^5

307132人目の素数さん2017/05/14(日) 07:58:59.92ID:UERycwtg
>>306 訂正
1-Σ[a,b,c,d,e<5,a+b+c+d+e=15]C[15,a]C[15-a,b]C[15-a-b,c]C[15-a-b-c,d](1/5)^15
=1-8681673000/30517578125
=174687241/244140625

308◆2VB8wsVUoo 2017/05/14(日) 09:10:17.70ID:fNprJr1l

309◆2VB8wsVUoo 2017/05/14(日) 09:10:42.44ID:fNprJr1l

310◆2VB8wsVUoo 2017/05/14(日) 09:11:09.21ID:fNprJr1l

311◆2VB8wsVUoo 2017/05/14(日) 09:11:36.32ID:fNprJr1l

312◆2VB8wsVUoo 2017/05/14(日) 09:12:02.08ID:fNprJr1l

313◆2VB8wsVUoo 2017/05/14(日) 09:12:29.31ID:fNprJr1l

314◆2VB8wsVUoo 2017/05/14(日) 09:12:56.57ID:fNprJr1l

315◆2VB8wsVUoo 2017/05/14(日) 09:13:23.28ID:fNprJr1l

316◆2VB8wsVUoo 2017/05/14(日) 09:13:51.24ID:fNprJr1l

317◆2VB8wsVUoo 2017/05/14(日) 09:14:19.71ID:fNprJr1l

318132人目の素数さん2017/05/14(日) 09:59:34.50ID:aOBm0ly2
志賀浩二著『ベクトル解析30講』を読んでいます。

k 階のテンソル積のまでは、その元に意味がありました。

k 階のテンソル積は、 V^* × V^* × … × V^* から Rへの k 重線形関数の
集合でした。

それがテンソル代数になるとその元が写像だということが意識されなくなります。

これはどういうことでしょうか?

319◆2VB8wsVUoo 2017/05/14(日) 11:09:04.74ID:fNprJr1l

320◆2VB8wsVUoo 2017/05/14(日) 11:09:31.56ID:fNprJr1l

321◆2VB8wsVUoo 2017/05/14(日) 11:09:59.74ID:fNprJr1l

322◆2VB8wsVUoo 2017/05/14(日) 11:10:28.79ID:fNprJr1l

323◆2VB8wsVUoo 2017/05/14(日) 11:10:57.90ID:fNprJr1l

324◆2VB8wsVUoo 2017/05/14(日) 11:11:25.88ID:fNprJr1l

325◆2VB8wsVUoo 2017/05/14(日) 11:11:54.32ID:fNprJr1l

326◆2VB8wsVUoo 2017/05/14(日) 11:12:21.97ID:fNprJr1l

327◆2VB8wsVUoo 2017/05/14(日) 11:12:48.26ID:fNprJr1l

328◆2VB8wsVUoo 2017/05/14(日) 11:13:15.61ID:fNprJr1l

329132人目の素数さん2017/05/14(日) 12:05:19.65ID:ZDfqLZuc
>>318
例えば、自然数を定義するときに
ペアノの公理を満たす例として、
集合論上に
0=φ,
succ(n)=n∪{n}
とするのは有名だけれど、
それがペアノの公理を満たすことを見た後では
n が集合であったことは特に注意しない。
n≦n+1 は使っても、
n⊂n+1 には普通言及しないのが普通。
それが、定義とモデルの切り分け
の界面だと思うよ。
テンソルの定義も何通りかあって、
>>318のやり方だけとは限らないし。

330132人目の素数さん2017/05/14(日) 12:40:48.06ID:ZDfqLZuc
>>237
>>305 の解法には、同意。
そのΣを等式変形で解決するアテを思いつかない
から、全例列挙で迫ってみよう。
Σ[a,b,c,d,e<5,a+b+c+d+e=15] を満たす
a,b,c,d,e のうち a≧b≧c≧d≧e≧0 を満すものは
(a,b,c,d)=
(4,4,4,3,0),
(4,4,4,2,1),
(4,4,3,3,1),
(4,4,3,2,2),
(4,3,3,3,2),
(3,3,3,3,3).
そのパターンに当てはまるカードの出方の総数は、順列として
m = {5!/(3!1!1!)}{15!/(4!4!4!3!0!)}
+{5!/(3!1!1!)}{15!/(4!4!4!2!1!)}
+{5!/(2!2!1!)}{15!/(4!4!3!3!1!)}
+{5!/(2!1!2!)}{15!/(4!4!3!2!2!)}
+{5!/(1!3!1!)}{15!/(4!3!3!3!1!)}
+{5!/(5!)}{15!/(3!3!3!3!3!)}.
求める確率は、
m/(5^15) = 89633544/244140625 ≒ 0.284

331132人目の素数さん2017/05/14(日) 14:00:19.11ID:aOBm0ly2
>>237

sum binomial(15, i)*4^(15-i) from i = 5 to 15 = 5012015501
5 * 5012015501 = 25060077505

sum binomial(15, i)*binomial(15-i, j)*3^(15-i-j) from j = 5 to 15-i from i = 5 to 10 = 323173994
binomial(5, 2) * 323173994 = 3231739940

binomial(15, 5) * binomial(10, 5) = 756756

25060077505 - 3231739940 + 756756 = 21829094321

5^15 = 30517578125

21829094321 / 30517578125 = 0.715295762710528

332132人目の素数さん2017/05/14(日) 14:02:50.22ID:aOBm0ly2
>>329

k 階のテンソル積を、 V^* × V^* × … × V^* から Rへの k 重線形関数の集合

は、結局、お望みの代数的構造を構成するのに利用しただけということですね。

333132人目の素数さん2017/05/14(日) 15:01:20.64ID:uhMzyuBm
ただの行列だって、ベクトルに作用するものとして意識しているときもあれば、
行列同士の代数関係に興味があるときもあるというだけのことだろ。

334132人目の素数さん2017/05/14(日) 15:14:54.87ID:6cIQ1sOo
>>331 thx
約7割と返事しときますわー
(誘導IRL付で)

335132人目の素数さん2017/05/14(日) 15:36:21.64ID:N1FT5xS+
下の画像に書いてある問題の意味が分かりません。
高校数学なら中国語が分からなくても、どんな問題か
すぐに分かるのですが、行列となると、行列の知識が
あまりないのでさっぱりです。
1番は固有値と固有ベクトルを求めよという問題だと
思いますが、2番の(1)、(2)の問題にある、
こざとへんに介の文字が入力できないので、調べること
ができません。

19番は日本語で書いてあっても、分からないと思います。
意味はおそらく、A^TはAの転置行列で、(x^T){(A^T)A}x>0
が成り立つための必要十分条件はr(A)=n(Aのrankがnという意味?)という
意味ではないかと思いますが難しそうで分かりません。

画像
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

2番と19番の解説をお願いします。

336132人目の素数さん2017/05/14(日) 15:50:33.84ID:d5Ks4WqA
再見

337132人目の素数さん2017/05/14(日) 15:58:55.29ID:N1FT5xS+
こざとへんに介の文字は階の意味のようです。
3番は固有値が与えられただけでは、detAとtrAは値が確定しないと思うのですが。

338132人目の素数さん2017/05/14(日) 16:37:08.55ID:sZgh4tjV
8n^2=64nlog2(n)

339132人目の素数さん2017/05/14(日) 17:23:24.90ID:ZDfqLZuc
>>331
ああ、1から引いてなかったな。

340◆2VB8wsVUoo 2017/05/14(日) 17:52:42.48ID:fNprJr1l

341◆2VB8wsVUoo 2017/05/14(日) 17:53:05.25ID:fNprJr1l

342◆2VB8wsVUoo 2017/05/14(日) 17:53:30.50ID:fNprJr1l

343◆2VB8wsVUoo 2017/05/14(日) 17:53:55.57ID:fNprJr1l

344◆2VB8wsVUoo 2017/05/14(日) 17:54:20.92ID:fNprJr1l

345◆2VB8wsVUoo 2017/05/14(日) 17:54:47.10ID:fNprJr1l

346◆2VB8wsVUoo 2017/05/14(日) 17:55:13.04ID:fNprJr1l

347◆2VB8wsVUoo 2017/05/14(日) 17:55:36.52ID:fNprJr1l

348◆2VB8wsVUoo 2017/05/14(日) 17:56:01.72ID:fNprJr1l

349◆2VB8wsVUoo 2017/05/14(日) 17:56:25.85ID:fNprJr1l

350132人目の素数さん2017/05/14(日) 18:46:39.12ID:ZDfqLZuc
>>335
↓ここが参考になった。
https://ja.wiktionary.org/wiki/%E3%82%AB%E3%83%86%E3%82%B4%E3%83%AA:%E4%B8%AD%E5%9B%BD%E8%AA%9E_%E6%95%B0%E5%AD%A6
阝へんに介は「階」の中国字だが、
「n階」行列はrankではなくn次の意味らしい。

2. 下記の行列Aの固有値と固有ベクトルを求めよ。
(1) Aはn次の零行列
(2) Aはn次のスカラー行列

3. 三次行列Aの固有値がλ_1=-1(二重),λ_2=4であるとき、
  detAとtrAを求めよ。

19. Aがm×n行列であるとき、任意のx∈R^n,x≠0に対してx^T(A^TA)x>0
  である必要十分条件はrank(A)=nであること証明せよ。


2.(2) A=λI, λはスカラー, Iはn次単位行列 のとき、
  Aの固有値はλがn重, 固有ベクトルは任意のn次ベクトル。
(1) 零行列は(1)でλ=0の場合。

3. detA = (-1)(-1)4 = 4,
  trA = (-1)+(-1)+4 = 2.

19. Aのスカラーが実数って書いてないけど、
  そこはエスパーすべきなんだろうね。
x^T(A^TA)x = (Ax)^TAx = |Ax|^2 より、
x^T(A^TA)x>0 ⇔ |Ax|^2>0 ⇔ Ax≠0.
x≠0の下でAx≠0とrank(A)=nが同値であることを証明せよ
という問題だが、
rank(A)≠0 ⇔ Aが固有値0を持つ ⇔ x≠0,Ax=0xとなるxが在る
だから、教わったrankの定義に沿って「⇔ Aが固有値0を持つ」
の部分の証明を書けばいい。rankの定義は教科書で異なるから。

351132人目の素数さん2017/05/14(日) 18:57:30.21ID:H6Ke28TS
(体といえば可換体のみをさす)
L/K は体の拡大で [L:K]=2
f(x)∈K[x] は3次多項式で K 上既約
このとき
f(x) は L 上既約でもあることの証明
たのむ

352132人目の素数さん2017/05/14(日) 19:29:06.41ID:+K8R8HLl
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚
高次方程式です。
この後、どうすれば良いですか?

353132人目の素数さん2017/05/14(日) 19:29:32.61ID:ZDfqLZuc
>>350の訂正
19. 「固有値を持つ」はまずかったな。
x→AxはIm(A)への全射線型写像だから、
単射⇔rank(A)=dimIm(A)=dimDom(A)=n.

354132人目の素数さん2017/05/14(日) 19:37:08.85ID:sZgh4tjV
>>352
下から2段目
-4x^2-4x
だぞ

355132人目の素数さん2017/05/14(日) 19:39:52.53ID:NgIIBA+1
割りきれるはずのものが割りきれなければどこか間違えたんだとは思わないのか。

356132人目の素数さん2017/05/14(日) 19:52:25.91ID:ZDfqLZuc
>>351
f(x)がL上既約でないと仮定すると、
3次式だから、1次因子を持つ。
f(x)=(x-a)q(x),a∈L,q(x)∈L[x]と置けるが、
a∈KではK上既約に反するから
a∈L-Kである。よって
aのK-共役{a,~a}は、a≠~aである。
f(x)∈K[x]よりf(~a)=~f(a)=~0=0なので、
((~a)-a)q(~a)=0よりq(~a)=0と判る。
これよりq(x)=(x-~a)p(x),p[x]∈L[x]と置けて
f(x)はL上の2次因子(x-a)(x-~a)を持つが、
x∈Kのとき~(x-a)(x-~a)=((~x)-~a)((~)x-~~a)
=(x-~a)(x-a)なので(x-a)(x-~a)∈K[x]である。
これはf(x)がK上既約であることに反する。

357132人目の素数さん2017/05/14(日) 20:31:46.48ID:aOBm0ly2
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

↑は伊理正夫 他著『ベクトルとテンソル』です。
2枚目と3枚目の赤い線を引いたところを見てください。

意味不明です。

伊理正夫さんは大丈夫な人なのでしょうか?

358132人目の素数さん2017/05/14(日) 20:36:48.65ID:+K8R8HLl
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚
高次方程式です
どこならx-1など出てきたのでしょうか?

359132人目の素数さん2017/05/14(日) 20:44:48.16ID:aOBm0ly2
>>357

あ、勘違いしていました。
おかしくないですね。

360132人目の素数さん2017/05/14(日) 20:48:17.29ID:aOBm0ly2
>>357

ところで、この本、伊理正夫さんの本にしては、異常に丁寧に書かれていますね。

361132人目の素数さん2017/05/14(日) 20:48:21.05ID:g1vlaehO
>>357
どこが不明なの?
私にはよく解るけど

362132人目の素数さん2017/05/14(日) 20:49:14.65ID:g1vlaehO
>>359
あなたが大丈夫なのかと

363132人目の素数さん2017/05/14(日) 21:22:39.18ID:ZDfqLZuc
>>358
どこって、、、
x^2-4x+3 を因数分解したんだろ。

364132人目の素数さん2017/05/14(日) 21:38:52.34ID:mNt6uEP2
 ゼータ関数をガンマ関数を用いて表示するとき、積分部分を、0から無限までの積分とするものと、無限から原点を回ってまた無限にいくような経路の複素線積分で表すものの二種類があるようですが、これは好みの問題なのでしょうか?
 前者では全平面で正則でないようなニュアンスで書いてある本があるのですが、両者とも解析接続できていますよね?

よろしくお願いします

365◆2VB8wsVUoo 2017/05/14(日) 21:59:53.05ID:fNprJr1l

366◆2VB8wsVUoo 2017/05/14(日) 22:00:14.17ID:fNprJr1l

367◆2VB8wsVUoo 2017/05/14(日) 22:00:37.22ID:fNprJr1l

368◆2VB8wsVUoo 2017/05/14(日) 22:01:01.96ID:fNprJr1l

369◆2VB8wsVUoo 2017/05/14(日) 22:01:27.38ID:fNprJr1l

370◆2VB8wsVUoo 2017/05/14(日) 22:01:54.11ID:fNprJr1l

371◆2VB8wsVUoo 2017/05/14(日) 22:02:20.08ID:fNprJr1l

372◆2VB8wsVUoo 2017/05/14(日) 22:02:46.88ID:fNprJr1l

373◆2VB8wsVUoo 2017/05/14(日) 22:03:12.00ID:fNprJr1l

374◆2VB8wsVUoo 2017/05/14(日) 22:03:38.70ID:fNprJr1l

375132人目の素数さん2017/05/14(日) 22:11:19.74ID:aOBm0ly2
伊理正夫 他著『ベクトルとテンソル』を読んでいます。

(1)
次元 n のベクトル空間 V において、ある一次独立なベクトルの集合 {b_1, …, b_s} に V の任意のベクトル b を加えたものが一次従属になるならば、 {b_1, …, b_s} は V の基底である。

(2)
k > n のとき、任意のベクトル {b_1, …, b_k} は一次従属である。

と書いてあります。

(2)の証明ですが、(1)の「直接の結果である」と書かれていますが意味不明です。

(1)から(2)はどのように導かれるのでしょうか?

376132人目の素数さん2017/05/14(日) 22:13:25.30ID:DsB33qI9
次元の定義より自明である

377132人目の素数さん2017/05/14(日) 22:16:15.01ID:aOBm0ly2
k (> n) 個のベクトル {b_1, …, b_k} が一次独立であると仮定し、
背理法で(1)の直接の結果として、矛盾を導けるでしょうか?

378132人目の素数さん2017/05/14(日) 22:21:18.06ID:aOBm0ly2
k (> n) 個のベクトル {b_1, …, b_k} が一次独立であると仮定する。

{b_1, …, b_k} に V の任意のベクトル b を加えたものが一次従属ならば、
{b_1, …, b_k} は V の基底である。よって、 k = n > n となって矛盾。

そうでなければ、 {b_1, …, b_k, b_(k+1)} が一次独立になるような b_(k+1) が存在する。

{b_1, …, b_k, b_(k+1)} に V の任意のベクトル b を加えたものが一次従属ならば、
{b_1, …, b_k, b_(k+1)} は V の基底である。よって、 k + 1 = n > n となって矛盾。

そうでなければ、 {b_1, …, b_k, b_(k+1), b_(k+2)} が一次独立になるような b_(k+2) が存在する。



となって矛盾は(1)の「直接の結果」として導けません。

379132人目の素数さん2017/05/14(日) 22:22:40.18ID:N1FT5xS+
>>350
>>353

大変感謝しております。
ご指示に従って考えてみます。

380132人目の素数さん2017/05/14(日) 22:26:29.35ID:aOBm0ly2
>>376

(1)の「直接の結果」として(2)を導けますか?

381132人目の素数さん2017/05/14(日) 22:28:22.50ID:aOBm0ly2
>>375

伊理正夫さんは大丈夫な人なのでしょうか?

382132人目の素数さん2017/05/14(日) 22:28:23.76ID:N1FT5xS+
>>335
で質問した者です。

1番の(3)で固有値の1つが重解で
出たのですが、この場合の固有ベクトルというのは
線形独立な2つの解ベクトルに未知数(k1,k2など)
を乗じたものの和の形で答えるのでしょうか?
それともk1,k2に何か適当な値を入れて答えるのでしょうか?
まさか、2つの解ベクトルを分離して、それぞれを
固有ベクトルとするわけではないですよね。

画像再掲
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

383132人目の素数さん2017/05/14(日) 22:35:38.67ID:aOBm0ly2
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

↑の3枚目の画像の次元の定義を見てください。

n 次元ベクトル空間では、「高々有限個のベクトルしか一次独立でありえない」ことは
伊理正夫さんは証明していません。

384132人目の素数さん2017/05/14(日) 22:43:24.75ID:aOBm0ly2
伊理正夫さんの説明だけからは、有限次元であってかつ無限次元であるようなベクトル空間が
存在しうるということになります。

385132人目の素数さん2017/05/14(日) 22:54:57.75ID:H6Ke28TS
>>356
途中の a≠~a が言える理由が
いまいちわかりません

386◆2VB8wsVUoo 2017/05/14(日) 23:17:03.34ID:fNprJr1l

387◆2VB8wsVUoo 2017/05/14(日) 23:17:25.97ID:fNprJr1l

388◆2VB8wsVUoo 2017/05/14(日) 23:17:46.18ID:fNprJr1l

389◆2VB8wsVUoo 2017/05/14(日) 23:18:07.51ID:fNprJr1l

390◆2VB8wsVUoo 2017/05/14(日) 23:18:27.48ID:fNprJr1l

391◆2VB8wsVUoo 2017/05/14(日) 23:18:51.07ID:fNprJr1l

392◆2VB8wsVUoo 2017/05/14(日) 23:19:13.52ID:fNprJr1l

393◆2VB8wsVUoo 2017/05/14(日) 23:19:38.28ID:fNprJr1l

394◆2VB8wsVUoo 2017/05/14(日) 23:20:02.27ID:fNprJr1l

395◆2VB8wsVUoo 2017/05/14(日) 23:20:25.48ID:fNprJr1l

396132人目の素数さん2017/05/15(月) 02:46:13.73ID:fAC9/Ok6
>>382
1.(3)のAは
固有値-2を重解に持ち、
固有値-2に対する固有ベクトルは
{(k1)(1,1,0)+(k2)(0,1,1) | k1,k2∈R}.
正直に、Ax=-2xの解を全て挙げたらいい。

397351(=385)2017/05/15(月) 03:30:59.67ID:xCsc+kvb
385に書いた件、自分で間を埋めようとしましたが、諦めて違う証明をしました。

f(x)がL上既約でないと仮定すると、
3次式だから、1次因子を持つ。
f(x)=(x-a)q(x),a∈L,q(x)∈L[x]と置ける。

f(x)を最高次の係数で割ってモニックにする。そうしたものはやはりK上既約だから、aのK上最小多項式になる。
[K(a):K]=degf(x)=3

一方で L⊃K(a)⊃K だから 2≧[K(a):K]
矛盾

3983512017/05/15(月) 03:32:27.10ID:xCsc+kvb
>>356 ありがとうございました

399◆2VB8wsVUoo 2017/05/15(月) 09:05:18.67ID:D6Tvv8g8

400◆2VB8wsVUoo 2017/05/15(月) 09:05:42.15ID:D6Tvv8g8

401◆2VB8wsVUoo 2017/05/15(月) 09:06:05.01ID:D6Tvv8g8

402◆2VB8wsVUoo 2017/05/15(月) 09:06:28.78ID:D6Tvv8g8

403◆2VB8wsVUoo 2017/05/15(月) 09:06:54.76ID:D6Tvv8g8

404◆2VB8wsVUoo 2017/05/15(月) 09:07:22.21ID:D6Tvv8g8

405◆2VB8wsVUoo 2017/05/15(月) 09:07:50.59ID:D6Tvv8g8

406◆2VB8wsVUoo 2017/05/15(月) 09:08:17.99ID:D6Tvv8g8

407◆2VB8wsVUoo 2017/05/15(月) 09:08:42.67ID:D6Tvv8g8

408◆2VB8wsVUoo 2017/05/15(月) 09:09:08.62ID:D6Tvv8g8

409132人目の素数さん2017/05/15(月) 10:17:31.86ID:1nGC2Wwg
>>263
お願いします

410◆2VB8wsVUoo 2017/05/15(月) 10:32:12.73ID:D6Tvv8g8

411◆2VB8wsVUoo 2017/05/15(月) 10:32:34.03ID:D6Tvv8g8

412◆2VB8wsVUoo 2017/05/15(月) 10:32:57.54ID:D6Tvv8g8

413◆2VB8wsVUoo 2017/05/15(月) 10:33:21.48ID:D6Tvv8g8

414◆2VB8wsVUoo 2017/05/15(月) 10:33:46.12ID:D6Tvv8g8

415◆2VB8wsVUoo 2017/05/15(月) 10:34:08.93ID:D6Tvv8g8

416◆2VB8wsVUoo 2017/05/15(月) 10:34:34.30ID:D6Tvv8g8

417◆2VB8wsVUoo 2017/05/15(月) 10:34:56.98ID:D6Tvv8g8

418◆2VB8wsVUoo 2017/05/15(月) 10:35:17.78ID:D6Tvv8g8

419◆2VB8wsVUoo 2017/05/15(月) 10:35:41.76ID:D6Tvv8g8

420132人目の素数さん2017/05/15(月) 10:47:10.98ID:AR0EIlJb
爺乙

421132人目の素数さん2017/05/15(月) 18:33:10.13ID:LWzyiEOs
>>338
は誰も解けないのか?
偉そうにしてる馬鹿しかいないのかなあ

422132人目の素数さん2017/05/15(月) 18:37:37.86ID:5kqxDZqh
ひゃはー

423132人目の素数さん2017/05/15(月) 19:22:46.52ID:9Whj1GmD
A,Bが、ABABと順にサイコロを振って、先に3以上の目を出した時
その人の勝ちトス。

n回以下の回数では勝敗が決まらない確率が

(1/3)^n

になるらしいんですが、「以下」と書いてるのに何でこうなるんですか
足すんじゃないんですか

424132人目の素数さん2017/05/15(月) 19:40:24.75ID:Vn/TeRbc
n回目までドローだからだろ
n回とも1or2が出る確率

425132人目の素数さん2017/05/15(月) 19:47:36.20ID:9Whj1GmD
それは

n回では勝敗が決まらない確率じゃないの

問題は

n回以下の回数では勝敗が決まらない確率

なんだが

426132人目の素数さん2017/05/15(月) 19:58:01.55ID:fAC9/Ok6
>>338 >>421
解けるとか解けないとかいう問題でもない気がするが?

8n^2=64nlog2(n) ⇔ log(n)/n = (log2)/8.
x = log(1/n)と置いて、xe^x = -(log2)/8.
LambertのW関数を使って、x = W(-(log2)/8).
n = 1/e^W(-(log2)/8) ≒ 1.0999970...

W関数の値は、数値計算によるしかない。
上記の近似値はWolframに聞いた。

427132人目の素数さん2017/05/15(月) 20:02:15.56ID:fAC9/Ok6
>>425
n回で決まってないってことは、
n-1回目にも決まってなかったってこと。
足す必要なし。

428132人目の素数さん2017/05/15(月) 20:07:49.84ID:9Whj1GmD
>>427
じゃあなんで

3回以下の回数でAが勝つ確率は

1回で勝つ確率と3回で勝つ確率を足すのか

429132人目の素数さん2017/05/15(月) 20:26:49.28ID:9Whj1GmD
分からないのか
そんなに自明なことじゃないからな

430132人目の素数さん2017/05/15(月) 20:29:08.06ID:yVQuC1N+
これはおそらく質問者が国語力に重大な欠陥を抱えてると見た

431◆2VB8wsVUoo 2017/05/15(月) 20:51:46.22ID:D6Tvv8g8

432◆2VB8wsVUoo 2017/05/15(月) 20:52:07.55ID:D6Tvv8g8

433◆2VB8wsVUoo 2017/05/15(月) 20:52:30.39ID:D6Tvv8g8

434◆2VB8wsVUoo 2017/05/15(月) 20:52:53.25ID:D6Tvv8g8

435◆2VB8wsVUoo 2017/05/15(月) 20:53:16.48ID:D6Tvv8g8

436◆2VB8wsVUoo 2017/05/15(月) 20:53:37.77ID:D6Tvv8g8

437◆2VB8wsVUoo 2017/05/15(月) 20:54:02.68ID:D6Tvv8g8

438◆2VB8wsVUoo 2017/05/15(月) 20:54:25.26ID:D6Tvv8g8

439◆2VB8wsVUoo 2017/05/15(月) 20:54:46.86ID:D6Tvv8g8

440◆2VB8wsVUoo 2017/05/15(月) 20:55:12.91ID:D6Tvv8g8

441132人目の素数さん2017/05/15(月) 20:56:27.30ID:9Whj1GmD
分からないから国語力のせいにするやつwwwwwwwwwwwwww

442132人目の素数さん2017/05/15(月) 21:19:11.02ID:rYc3p83h
斎藤毅著『線形代数の世界』を読んでいます。

p.26の

定理1.5.4
V を K 線形空間とする。 x_1, …, x_m と y_1, …, y_n がどちらも V の基底ならば、 m = n である。

という定理の証明ですが、非常にエレガントな証明です。他の線形代数の本に同様の証明は
ないようですが、どこからパクってきた証明でしょうか?

443132人目の素数さん2017/05/15(月) 21:27:49.63ID:Vn/TeRbc
>>428
それは1回目でAが勝つ事象と3回目でAが勝つ事象が排反だから

444◆2VB8wsVUoo 2017/05/15(月) 21:56:27.46ID:D6Tvv8g8

445◆2VB8wsVUoo 2017/05/15(月) 21:56:47.97ID:D6Tvv8g8

446◆2VB8wsVUoo 2017/05/15(月) 21:57:08.68ID:D6Tvv8g8

447◆2VB8wsVUoo 2017/05/15(月) 21:57:30.38ID:D6Tvv8g8

448◆2VB8wsVUoo 2017/05/15(月) 21:57:51.86ID:D6Tvv8g8

449◆2VB8wsVUoo 2017/05/15(月) 21:58:13.17ID:D6Tvv8g8

450◆2VB8wsVUoo 2017/05/15(月) 21:58:34.74ID:D6Tvv8g8

451◆2VB8wsVUoo 2017/05/15(月) 21:58:55.42ID:D6Tvv8g8

452◆2VB8wsVUoo 2017/05/15(月) 21:59:20.64ID:D6Tvv8g8

453◆2VB8wsVUoo 2017/05/15(月) 21:59:41.23ID:D6Tvv8g8

454132人目の素数さん2017/05/15(月) 23:27:24.87ID:fAC9/Ok6
\が多すぎて、質問と応答の噛み合わせが見えづらいな。
2chは、そもそも荒らしが最優先という運営方針なので、
管理者に何か言っても始まらないが。

455132人目の素数さん2017/05/15(月) 23:30:32.51ID:N6zlLArb
専門板は運営から見捨てられている

456132人目の素数さん2017/05/15(月) 23:45:16.71ID:CLyI4zCN
>>442
なぜパクってきたことを前提として
質問できるのか?

457132人目の素数さん2017/05/15(月) 23:47:03.64ID:N6zlLArb
松坂君なのだからスルーよろ

458132人目の素数さん2017/05/15(月) 23:59:05.14ID:CNrUHgvn
f_1,f_2,•••,f_k,f_k+1が互いに素⇒f_1g_1+•••+f_k+1g_k+1となるgが存在する

帰納法で示してるんですがk+1のときの手順を教えてください

459132人目の素数さん2017/05/16(火) 00:17:07.16ID:IBDTEWnK
日本語を勉強してね

460132人目の素数さん2017/05/16(火) 00:28:34.68ID:x4yqWD0E
解けたんでいいです

461132人目の素数さん2017/05/16(火) 00:29:43.63ID:qwPDQT8o
>>456
日本人学者に独創的な考察は無理、という偏見があるからなんでしょうね。

462132人目の素数さん2017/05/16(火) 00:33:13.20ID:PrryPRav
数学なんか理解しても人間性の評価に
何の影響もないからどうでもいい

いい大学の入試パスできる数学以外は
使えん

ゴミ

463◆2VB8wsVUoo 2017/05/16(火) 06:21:55.41ID:gCXIlyDM

464◆2VB8wsVUoo 2017/05/16(火) 06:22:18.71ID:gCXIlyDM

465◆2VB8wsVUoo 2017/05/16(火) 06:22:41.46ID:gCXIlyDM

466◆2VB8wsVUoo 2017/05/16(火) 06:23:04.99ID:gCXIlyDM

467◆2VB8wsVUoo 2017/05/16(火) 06:23:30.21ID:gCXIlyDM

468◆2VB8wsVUoo 2017/05/16(火) 06:23:53.25ID:gCXIlyDM

469◆2VB8wsVUoo 2017/05/16(火) 06:24:16.02ID:gCXIlyDM

470◆2VB8wsVUoo 2017/05/16(火) 06:24:40.41ID:gCXIlyDM

471◆2VB8wsVUoo 2017/05/16(火) 06:25:04.57ID:gCXIlyDM

472◆2VB8wsVUoo 2017/05/16(火) 06:25:28.62ID:gCXIlyDM

473132人目の素数さん2017/05/16(火) 12:32:51.55ID:H3zByGuo
すみません

E[R_t|s_t=s,a_t=a]

の「|」ってどういう意味ですか?

474132人目の素数さん2017/05/16(火) 12:35:39.25ID:lMHJ3pMv
分野による

475132人目の素数さん2017/05/16(火) 12:39:22.29ID:H3zByGuo
マルコフ決定過程
https://ja.wikipedia.org/wiki/%E3%83%9E%E3%83%AB%E3%82%B3%E3%83%95%E6%B1%BA%E5%AE%9A%E9%81%8E%E7%A8%8B

のなかで、

「政策は通常s,a の条件付き分布 P(a|s) として規定され、」

とありますが、その中の

P(a|s)

の「|」はどういう意味を表していますか?

476132人目の素数さん2017/05/16(火) 12:49:38.30ID:AJLXM2LA
the conditional probability of a given s
the probability of a under the condition s
の given や under the condition

477132人目の素数さん2017/05/16(火) 12:56:33.00ID:H3zByGuo
ありがとうございました。

478◆2VB8wsVUoo 2017/05/16(火) 13:53:19.24ID:gCXIlyDM

479◆2VB8wsVUoo 2017/05/16(火) 13:53:39.99ID:gCXIlyDM

480◆2VB8wsVUoo 2017/05/16(火) 13:53:59.90ID:gCXIlyDM

481◆2VB8wsVUoo 2017/05/16(火) 13:54:21.58ID:gCXIlyDM

482◆2VB8wsVUoo 2017/05/16(火) 13:54:41.83ID:gCXIlyDM

483◆2VB8wsVUoo 2017/05/16(火) 13:55:02.38ID:gCXIlyDM

484◆2VB8wsVUoo 2017/05/16(火) 13:55:23.72ID:gCXIlyDM

485◆2VB8wsVUoo 2017/05/16(火) 13:55:43.32ID:gCXIlyDM

486◆2VB8wsVUoo 2017/05/16(火) 13:56:03.35ID:gCXIlyDM

487◆2VB8wsVUoo 2017/05/16(火) 13:56:24.83ID:gCXIlyDM

488132人目の素数さん2017/05/16(火) 13:59:51.20ID:z34KwUEF
週刊ダイアモンドの記事読んでたんだけど、小学校に入った頃母親から、
1から100までの数全てを足してごらんとお題を出されて等差数列の公式に気付いて
すぐ答えたって…天才すごいな。数学者の小林俊行さんってガウスかよ

489132人目の素数さん2017/05/16(火) 14:33:37.27ID:+X+AAd2Z
>>488

小学生なら知識として知っているのではないでしょうか?

490◆2VB8wsVUoo 2017/05/16(火) 14:38:38.80ID:gCXIlyDM

491◆2VB8wsVUoo 2017/05/16(火) 14:38:59.62ID:gCXIlyDM

492◆2VB8wsVUoo 2017/05/16(火) 14:39:20.63ID:gCXIlyDM

493◆2VB8wsVUoo 2017/05/16(火) 14:39:45.14ID:gCXIlyDM

494◆2VB8wsVUoo 2017/05/16(火) 14:40:08.54ID:gCXIlyDM

495◆2VB8wsVUoo 2017/05/16(火) 14:40:32.98ID:gCXIlyDM

496◆2VB8wsVUoo 2017/05/16(火) 14:40:56.51ID:gCXIlyDM

497◆2VB8wsVUoo 2017/05/16(火) 14:41:17.19ID:gCXIlyDM

498◆2VB8wsVUoo 2017/05/16(火) 14:41:36.30ID:gCXIlyDM

499◆2VB8wsVUoo 2017/05/16(火) 14:42:01.67ID:gCXIlyDM

500132人目の素数さん2017/05/16(火) 15:43:43.91ID:B6buOpTB
>>396
>固有ベクトルは
>{(k1)(1,1,0)+(k2)(0,1,1) | k1,k2∈R}

お礼が遅くなりました。
ありがとうございました。

501132人目の素数さん2017/05/16(火) 17:32:01.06ID:+X+AAd2Z
「半傾的」という用語があります。

なぜこのような用語があるのでしょうか?

この用語に存在意義はあるのでしょうか?

502132人目の素数さん2017/05/16(火) 17:52:52.58ID:+X+AAd2Z
擬ベクトルって何ですか?

503132人目の素数さん2017/05/16(火) 20:34:21.33ID:qNSxdYfD
ゴミ

504132人目の素数さん2017/05/16(火) 20:39:54.08ID:AJLXM2LA
3次元でのベクトル積みたいなやつ

505132人目の素数さん2017/05/16(火) 20:59:40.12ID:qNSxdYfD
自分の偏差値とギャップのある難関大の問題も
解説すれば「分かる」とうなづくが、全然それを
覚え込もうとせず、しばらくして類題を解かせると
全然解答できない生徒ってどうすれば成績があがりますか

506132人目の素数さん2017/05/16(火) 21:02:35.96ID:HgOZoiWQ
鮭を食わせろ

507132人目の素数さん2017/05/16(火) 21:09:05.40ID:qNSxdYfD
>>506
真面目に答えろ糞が

508◆2VB8wsVUoo 2017/05/16(火) 21:11:37.39ID:gCXIlyDM

509◆2VB8wsVUoo 2017/05/16(火) 21:11:57.61ID:gCXIlyDM

510◆2VB8wsVUoo 2017/05/16(火) 21:12:14.27ID:gCXIlyDM

511◆2VB8wsVUoo 2017/05/16(火) 21:12:31.45ID:gCXIlyDM

512◆2VB8wsVUoo 2017/05/16(火) 21:12:51.79ID:gCXIlyDM

513◆2VB8wsVUoo 2017/05/16(火) 21:13:11.63ID:gCXIlyDM

514◆2VB8wsVUoo 2017/05/16(火) 21:13:31.98ID:gCXIlyDM

515◆2VB8wsVUoo 2017/05/16(火) 21:13:50.27ID:gCXIlyDM

516◆2VB8wsVUoo 2017/05/16(火) 21:14:11.78ID:gCXIlyDM

517◆2VB8wsVUoo 2017/05/16(火) 21:14:33.35ID:gCXIlyDM

518132人目の素数さん2017/05/16(火) 21:23:45.04ID:+X+AAd2Z
擬スカラーって何ですか?

519132人目の素数さん2017/05/16(火) 21:40:33.83ID:TGlD+eWz
>>505
受験数学は暗記であるということを理解させれば良いと思います
わかっただけでは解けないわけです

520132人目の素数さん2017/05/16(火) 21:46:29.47ID:zJNVKcLi
線型空間 K^n における外積空間 ∧^(n-1) K^n の元を
ホッジ作用素によって ∧^1 K^n へ移したもののこと。
∧^1 K^n は K^n と同型だから、∧^(n-1) K^n の元を
ベクトルとみなしたことになる。
∧^(n-1) K^n と K^n は、線型空間としては同型だが、
K^n 上の座標変換に際して成分は異なる変換を受ける。

521132人目の素数さん2017/05/16(火) 21:47:46.44ID:HgOZoiWQ
鼻糞ホジホジ

522132人目の素数さん2017/05/16(火) 21:49:46.85ID:zJNVKcLi
あれ?挟んだ。>>502>>520な。
>>518
同様に、∧^n K^n の元をホッジ作用素によって
∧^0 K^n すなわち K の元とみなしたもののこと。

523132人目の素数さん2017/05/16(火) 21:50:41.19ID:qNSxdYfD
数学者は社会の役立たず
生活保護を受けて暮らせ

524132人目の素数さん2017/05/16(火) 21:53:49.06ID:HgOZoiWQ
頑張れアホ先生

525132人目の素数さん2017/05/16(火) 22:43:39.77ID:OMucHMmC
>>462
お前みたいなアホが生きてる意味ってなんだろうな。
2ちゃんに糞レス書き込む以外何もすることがない。

ゴミ

526132人目の素数さん2017/05/16(火) 23:03:37.74ID:5cxKtuwt
東大含め、旧帝は数学5割で受かるから数学の本質理解など要らん

数学は、入学したらさようなら

527132人目の素数さん2017/05/16(火) 23:59:24.32ID:zJNVKcLi
一時間、幸せになりたかったら酒を飲みなさい。
三日間、幸せになりたかったら結婚しなさい。
八日間、幸せになりたかったら豚を殺して食べなさい。
永遠に、幸せになりたかったら数学を学びなさい。

528132人目の素数さん2017/05/17(水) 00:35:22.36ID:t0rdrWYT
>>527
どれも間違ってるよ
幸せになりたかったらどんな汚い手を使ってでも
行きたいところに行けばいいだけ

529132人目の素数さん2017/05/17(水) 00:38:50.34ID:t0rdrWYT
数学なんてやる奴は社会に存在しないも
同然だし、だれも見向きもしない

ただの趣味でやってるだけで社会に情報提供も
しないとなると、数学者はますますゴミクズになる

知識を自慢したいがためだけに必死で数学やってる
この板の人間が最悪

530132人目の素数さん2017/05/17(水) 01:13:59.89ID:cgfHB7pZ
必死に拒否しなくても、自分で楽しむか
無視するかすればいいのにね。
劣等感って、大変だね。

531132人目の素数さん2017/05/17(水) 01:20:58.31ID:t0rdrWYT
本当に最悪なのは使えない数学が生きること

数学的優越感こそ最大の悪

532132人目の素数さん2017/05/17(水) 01:28:16.34ID:gQUO2wC/
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

設問1は素直に解いたんですけど、
設問2の方は
回答が、
1/πf [ sin(10πft0) - sin(6πft0) ]
となり、ここから先、何かさらに整理する必要ありますか?整理できますか?

533132人目の素数さん2017/05/17(水) 03:22:33.16ID:XSqPohyf
元は「永遠に幸せになりたかったら釣りを覚えなさい」な
開高健の「フィッシュオン」で知ったわ

534132人目の素数さん2017/05/17(水) 09:05:58.90ID:a66j11SR
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

↑青い線を引いたところを見てください。

なぜ通常の集合ではなく「multiset」となっているのでしょうか?

↑赤い線を引いたところを見てください。

dim W ≦ |I_1|

となっていますが、

dim W = |I_1|

ですよね。

535132人目の素数さん2017/05/17(水) 09:08:25.08ID:a66j11SR
>>534

書き忘れましたが、 V(m, F) は m 次元の F の元をスカラーとするベクトル空間のことです。

536132人目の素数さん2017/05/17(水) 09:38:33.42ID:a66j11SR
>>534

multiset と書かれているのは全く同じ列ベクトルが行列に含まれていることがあるからですね。

537◆2VB8wsVUoo 2017/05/17(水) 09:58:44.07ID:a+M0ej/B

538◆2VB8wsVUoo 2017/05/17(水) 09:59:01.11ID:a+M0ej/B

539◆2VB8wsVUoo 2017/05/17(水) 09:59:23.12ID:a+M0ej/B

540◆2VB8wsVUoo 2017/05/17(水) 09:59:43.39ID:a+M0ej/B

541◆2VB8wsVUoo 2017/05/17(水) 10:00:06.20ID:a+M0ej/B

542◆2VB8wsVUoo 2017/05/17(水) 10:00:32.15ID:a+M0ej/B

543◆2VB8wsVUoo 2017/05/17(水) 10:00:55.87ID:a+M0ej/B

544◆2VB8wsVUoo 2017/05/17(水) 10:01:20.67ID:a+M0ej/B

545◆2VB8wsVUoo 2017/05/17(水) 10:01:43.73ID:a+M0ej/B

546◆2VB8wsVUoo 2017/05/17(水) 10:02:15.68ID:a+M0ej/B


>462 132人目の素数さん2017/05/16(火) 00:33:13.20ID:PrryPRav
>数学なんか理解しても人間性の評価に
>何の影響もないからどうでもいい
>
>いい大学の入試パスできる数学以外は
>使えん
>
>ゴミ
>
>526 132人目の素数さん2017/05/16(火) 23:03:37.74ID:5cxKtuwt
>東大含め、旧帝は数学5割で受かるから数学の本質理解など要らん
>
>数学は、入学したらさようなら
>
>529 132人目の素数さん2017/05/17(水) 00:38:50.34ID:t0rdrWYT
>数学なんてやる奴は社会に存在しないも
>同然だし、だれも見向きもしない
>
>ただの趣味でやってるだけで社会に情報提供も
>しないとなると、数学者はますますゴミクズになる
>
>知識を自慢したいがためだけに必死で数学やってる
>この板の人間が最悪
>
>531 132人目の素数さん2017/05/17(水) 01:20:58.31ID:t0rdrWYT
>本当に最悪なのは使えない数学が生きること
>
>数学的優越感こそ最大の悪
>

547132人目の素数さん2017/05/17(水) 10:56:22.55ID:W6xl1z56
今日も増田さんはムラムラしてるようですね

548◆2VB8wsVUoo 2017/05/17(水) 11:19:27.07ID:a+M0ej/B

549132人目の素数さん2017/05/17(水) 11:45:05.75ID:Ww+EcmPc
荒らしに人生の最後を費やすまねっこ爺

550132人目の素数さん2017/05/17(水) 12:01:46.78ID:rLcNtLtb
(y^3-y)dx+xdy=0
答えx√(y^2-1)=Cy
教科書に途中が書いてないから教えてください。
お願いします。

551◆2VB8wsVUoo 2017/05/17(水) 12:08:17.45ID:a+M0ej/B

552◆2VB8wsVUoo 2017/05/17(水) 12:08:37.84ID:a+M0ej/B

553◆2VB8wsVUoo 2017/05/17(水) 12:08:56.39ID:a+M0ej/B

554◆2VB8wsVUoo 2017/05/17(水) 12:09:19.41ID:a+M0ej/B

555◆2VB8wsVUoo 2017/05/17(水) 12:09:40.89ID:a+M0ej/B

556◆2VB8wsVUoo 2017/05/17(水) 12:10:00.58ID:a+M0ej/B

557◆2VB8wsVUoo 2017/05/17(水) 12:10:21.55ID:a+M0ej/B

558◆2VB8wsVUoo 2017/05/17(水) 12:10:41.67ID:a+M0ej/B

559◆2VB8wsVUoo 2017/05/17(水) 12:11:02.71ID:a+M0ej/B

560◆2VB8wsVUoo 2017/05/17(水) 12:11:24.29ID:a+M0ej/B

561¥ ◇2VB8wsVUoo2017/05/17(水) 12:55:13.43ID:+ZAaxs99

562132人目の素数さん2017/05/17(水) 13:55:06.79ID:fxNoZjqq
>>550
(y^3-y)dx=-xdy
-dx/x=dy/(y^3-y)=((1/(y-1)+1/(y+1))/2-1/y)dy
-log x=(log(y-1)+log(y+1))/2-log y+C=log(√(y^2-1))/y+C

563◆2VB8wsVUoo 2017/05/17(水) 14:45:47.76ID:a+M0ej/B


>462 132人目の素数さん2017/05/16(火) 00:33:13.20ID:PrryPRav
>数学なんか理解しても人間性の評価に
>何の影響もないからどうでもいい
>
>いい大学の入試パスできる数学以外は
>使えん
>
>ゴミ
>
>526 132人目の素数さん2017/05/16(火) 23:03:37.74ID:5cxKtuwt
>東大含め、旧帝は数学5割で受かるから数学の本質理解など要らん
>
>数学は、入学したらさようなら
>
>529 132人目の素数さん2017/05/17(水) 00:38:50.34ID:t0rdrWYT
>数学なんてやる奴は社会に存在しないも
>同然だし、だれも見向きもしない
>
>ただの趣味でやってるだけで社会に情報提供も
>しないとなると、数学者はますますゴミクズになる
>
>知識を自慢したいがためだけに必死で数学やってる
>この板の人間が最悪
>
>531 132人目の素数さん2017/05/17(水) 01:20:58.31ID:t0rdrWYT
>本当に最悪なのは使えない数学が生きること
>
>数学的優越感こそ最大の悪
>

564¥ ◇2VB8wsVUoo2017/05/17(水) 15:00:00.12ID:FRmXKNzs

565132人目の素数さん2017/05/17(水) 15:51:48.01ID:cgfHB7pZ
>>533
「オーパ」じゃなかったかな

566132人目の素数さん2017/05/17(水) 15:57:23.18ID:XSqPohyf
そうかも。Playboyの連載だった記憶はあるんだが。

567◆2VB8wsVUoo 2017/05/17(水) 15:57:56.16ID:a+M0ej/B


>462 132人目の素数さん2017/05/16(火) 00:33:13.20ID:PrryPRav
>数学なんか理解しても人間性の評価に
>何の影響もないからどうでもいい
>
>いい大学の入試パスできる数学以外は
>使えん
>
>ゴミ
>
>526 132人目の素数さん2017/05/16(火) 23:03:37.74ID:5cxKtuwt
>東大含め、旧帝は数学5割で受かるから数学の本質理解など要らん
>
>数学は、入学したらさようなら
>
>529 132人目の素数さん2017/05/17(水) 00:38:50.34ID:t0rdrWYT
>数学なんてやる奴は社会に存在しないも
>同然だし、だれも見向きもしない
>
>ただの趣味でやってるだけで社会に情報提供も
>しないとなると、数学者はますますゴミクズになる
>
>知識を自慢したいがためだけに必死で数学やってる
>この板の人間が最悪
>
>531 132人目の素数さん2017/05/17(水) 01:20:58.31ID:t0rdrWYT
>本当に最悪なのは使えない数学が生きること
>
>数学的優越感こそ最大の悪
>

568¥ ◇2VB8wsVUoo2017/05/17(水) 16:03:50.21ID:FRmXKNzs

569◆2VB8wsVUoo 2017/05/17(水) 17:43:13.80ID:a+M0ej/B

570◆2VB8wsVUoo 2017/05/17(水) 17:43:31.80ID:a+M0ej/B

571◆2VB8wsVUoo 2017/05/17(水) 17:43:49.35ID:a+M0ej/B

572◆2VB8wsVUoo 2017/05/17(水) 17:44:06.41ID:a+M0ej/B

573◆2VB8wsVUoo 2017/05/17(水) 17:44:23.23ID:a+M0ej/B

574◆2VB8wsVUoo 2017/05/17(水) 17:44:40.24ID:a+M0ej/B

575◆2VB8wsVUoo 2017/05/17(水) 17:44:57.49ID:a+M0ej/B

576◆2VB8wsVUoo 2017/05/17(水) 17:45:26.12ID:a+M0ej/B

577◆2VB8wsVUoo 2017/05/17(水) 17:45:46.15ID:a+M0ej/B

578132人目の素数さん2017/05/17(水) 19:17:43.16ID:hS4h0K2O
f(x)=lim(n→∞)(1/n^(x+1))Σ(k=1,n)k^xとする。
lim(x→∞)f(x)は発散するか。

よろしくお願いします

579◆2VB8wsVUoo 2017/05/17(水) 19:22:54.58ID:a+M0ej/B


>462 132人目の素数さん2017/05/16(火) 00:33:13.20ID:PrryPRav
>数学なんか理解しても人間性の評価に
>何の影響もないからどうでもいい
>
>いい大学の入試パスできる数学以外は
>使えん
>
>ゴミ
>
>526 132人目の素数さん2017/05/16(火) 23:03:37.74ID:5cxKtuwt
>東大含め、旧帝は数学5割で受かるから数学の本質理解など要らん
>
>数学は、入学したらさようなら
>
>529 132人目の素数さん2017/05/17(水) 00:38:50.34ID:t0rdrWYT
>数学なんてやる奴は社会に存在しないも
>同然だし、だれも見向きもしない
>
>ただの趣味でやってるだけで社会に情報提供も
>しないとなると、数学者はますますゴミクズになる
>
>知識を自慢したいがためだけに必死で数学やってる
>この板の人間が最悪
>
>531 132人目の素数さん2017/05/17(水) 01:20:58.31ID:t0rdrWYT
>本当に最悪なのは使えない数学が生きること
>
>数学的優越感こそ最大の悪
>

580132人目の素数さん2017/05/17(水) 19:50:45.35ID:cgfHB7pZ
>>578
f(x)=lim[n→∞](1/n^(x+1))Σ(k=1,n)k^x
=lim[n→∞](1/n)Σ(k=1,n)(k/n)^x
=∫[0..1](t^x)dt        ←区分求積法
={x≠-1のとき}1/(x+1),
={x=-1のとき}+∞.

lim[x→∞]f(x)=1.収束する。

581132人目の素数さん2017/05/17(水) 21:30:53.81ID:M+oXc6xz
えっ

582132人目の素数さん2017/05/17(水) 21:34:49.75ID:a66j11SR
マトロイドって重要ですか?

583132人目の素数さん2017/05/17(水) 22:37:20.83ID:H64jzmhM
違いの分からないゴミは黙ってろ

584132人目の素数さん2017/05/18(木) 00:33:49.83ID:HNdmvkPh
>>581
「収束する」は合ってるだろ。
間違いの部分を、修正してごらんよ。(配点5点)

585132人目の素数さん2017/05/18(木) 01:00:44.30ID:EXOcb0sL
x<-1 のときはどうなりますか?

586132人目の素数さん2017/05/18(木) 03:25:46.13ID:HNdmvkPh
lim[x→∞]

587◆2VB8wsVUoo 2017/05/18(木) 03:25:50.36ID:txJJPOjc

588◆2VB8wsVUoo 2017/05/18(木) 03:26:11.03ID:txJJPOjc

589◆2VB8wsVUoo 2017/05/18(木) 03:26:30.51ID:txJJPOjc

590◆2VB8wsVUoo 2017/05/18(木) 03:26:48.88ID:txJJPOjc

591◆2VB8wsVUoo 2017/05/18(木) 03:27:09.20ID:txJJPOjc

592◆2VB8wsVUoo 2017/05/18(木) 03:27:29.75ID:txJJPOjc

593◆2VB8wsVUoo 2017/05/18(木) 03:27:51.42ID:txJJPOjc

594◆2VB8wsVUoo 2017/05/18(木) 03:28:21.86ID:txJJPOjc

595◆2VB8wsVUoo 2017/05/18(木) 03:28:40.05ID:txJJPOjc

596◆2VB8wsVUoo 2017/05/18(木) 03:28:59.43ID:txJJPOjc

597132人目の素数さん2017/05/18(木) 17:37:03.90ID:VwWOJQRZ
すみませんどなたか
>>111

>>364
これをお願い致します

598◆2VB8wsVUoo 2017/05/18(木) 18:31:34.98ID:txJJPOjc


>462 132人目の素数さん2017/05/16(火) 00:33:13.20ID:PrryPRav
>数学なんか理解しても人間性の評価に
>何の影響もないからどうでもいい
>
>いい大学の入試パスできる数学以外は
>使えん
>
>ゴミ
>
>526 132人目の素数さん2017/05/16(火) 23:03:37.74ID:5cxKtuwt
>東大含め、旧帝は数学5割で受かるから数学の本質理解など要らん
>
>数学は、入学したらさようなら
>
>529 132人目の素数さん2017/05/17(水) 00:38:50.34ID:t0rdrWYT
>数学なんてやる奴は社会に存在しないも
>同然だし、だれも見向きもしない
>
>ただの趣味でやってるだけで社会に情報提供も
>しないとなると、数学者はますますゴミクズになる
>
>知識を自慢したいがためだけに必死で数学やってる
>この板の人間が最悪
>
>531 132人目の素数さん2017/05/17(水) 01:20:58.31ID:t0rdrWYT
>本当に最悪なのは使えない数学が生きること
>
>数学的優越感こそ最大の悪
>

599◆2VB8wsVUoo 2017/05/18(木) 19:45:27.62ID:txJJPOjc

600◆2VB8wsVUoo 2017/05/18(木) 19:45:46.90ID:txJJPOjc

601◆2VB8wsVUoo 2017/05/18(木) 19:46:04.91ID:txJJPOjc

602◆2VB8wsVUoo 2017/05/18(木) 19:46:21.70ID:txJJPOjc

603◆2VB8wsVUoo 2017/05/18(木) 19:46:37.40ID:txJJPOjc

604◆2VB8wsVUoo 2017/05/18(木) 19:46:56.59ID:txJJPOjc

605◆2VB8wsVUoo 2017/05/18(木) 19:47:16.68ID:txJJPOjc

606◆2VB8wsVUoo 2017/05/18(木) 19:47:34.28ID:txJJPOjc

607◆2VB8wsVUoo 2017/05/18(木) 19:48:00.43ID:txJJPOjc

608◆2VB8wsVUoo 2017/05/18(木) 19:48:19.62ID:txJJPOjc

609132人目の素数さん2017/05/19(金) 04:01:34.69ID:Qw2/yAWX
f=(z-i)/(z+2)
によるz平面上の単位円|z|=1のf平面への写像を求めよ
ですけど、どう解くのが良いでしょうか?

610132人目の素数さん2017/05/19(金) 12:03:11.20ID:Pxmz5G25
対角線論法の質問ってここでして大丈夫?

611132人目の素数さん2017/05/19(金) 12:56:03.68ID:TfuwQeBO
>>609
何を前提にしていいんだ?
>>610
質問しだい

612132人目の素数さん2017/05/19(金) 13:53:29.94ID:kDqowFyg
学部一年レベルで申し訳ないんだけど

複素係数の多項式全体をC[x]として
3次複素正方行列全体をV とよぶ。
a,b,c は複素数として、3次正方行列A を
A :=( 0, a+b, 0 ;; 1, -ab, 0 ;; 0, 0, c)
と定義する。

この時、Vの部分ベクトル空間
W = { f(A) | f(x)はC[x]の元}
の次元を求めろ

って問題の解き方を教えてほしい。
行列A の中身はうろ覚えだが、やり方というか方針が知りたい。
基底の候補は出るけど、その独立性の確認のしかたとかが分からない
部分ベクトル空間であることの証明はいらない

613132人目の素数さん2017/05/19(金) 14:04:35.86ID:w+OoscY1
fの定義が欠けてるように見える

614132人目の素数さん2017/05/19(金) 14:14:41.13ID:4sw7u1F8
>>609
|f(z)-f(0)|を計算する。

615132人目の素数さん2017/05/19(金) 15:26:16.41ID:Uy8TkBeq
特性多項式のmoduloで考えると任意のfは2次以下になる

616132人目の素数さん2017/05/19(金) 17:33:44.23ID:NSIxxaNR
>>207
もともと結合的ではなくないか?
右から掛ける、左から掛ける、ってあったし

テンソル積がわからないけど、高校で習うかけ算のこと

617132人目の素数さん2017/05/19(金) 17:55:27.23ID:Pxmz5G25
>>611
>質問しだい

そう言いつつ質問したらスレ違いでもしっかり答えてくれるのが数学戦士なんだよね。
だがスレ違いとはわかってるからやめとくか。
でも無限を扱うスレって人いないんだよね…。

618132人目の素数さん2017/05/19(金) 17:58:09.64ID:aVM8PZRz
飢えたアホ

619132人目の素数さん2017/05/19(金) 18:08:25.23ID:Uy8TkBeq
>>616
「結合的」と「可換」をごちゃまぜにしてないか?
wikipediaで「行列」の項目を見てみ

テンソル積のことは当分忘れていい

620132人目の素数さん2017/05/19(金) 19:14:51.17ID:1XXgf0CE
>>204から曳きずっているのかな。
あの「×」は、いろいろモヤモヤするから、
(AA)A=A(AA) と書いたほうがいい気がするけど。

行列の乗法は非可換だが結合的で、
(AB)C=A(BC) が成り立つ。
もちろん、A=B=Cのときも。

621132人目の素数さん2017/05/19(金) 19:15:10.84ID:1XXgf0CE
>>612
ケイリー・ハミルトンの定理よりWは高々3次だが、
では、3次以下の何次かというと、
具体的なAの中身によるから、そこの確認が必要。
g(A)=O となる多項式 g の最小次数 n に対して
W は n 次空間となる。

A:=(0,a+b,0;; 1,-ab,0;; 0,0,c) が正確なら
A の固有多項式は φ(x)=(x^2+abx-a-b)(x-c) で、
最小(消去)多項式はその因数となるから
個々の a,b,c について φ の二次以下の因数で
φ(A)=O となるものが無いかチェックすることになる。

いづれにせよ、A の中身を確認しないと。

622132人目の素数さん2017/05/19(金) 19:45:52.06ID:E8H4SQrV
デブのキモヲタ

623132人目の素数さん2017/05/19(金) 20:11:30.40ID:1XXgf0CE
>>622
華麗にスルー

624132人目の素数さん2017/05/19(金) 20:20:38.34ID:G3BXAS23
>>613
ごめん聞こえなかったからもう一回言ってよ

625132人目の素数さん2017/05/19(金) 22:59:45.82ID:kDqowFyg
>>621
ありがとう

626132人目の素数さん2017/05/19(金) 23:23:35.29ID:oKNDRhJ7
>>609
z=x+i y]
f=X+i Y

で計算して
5x^2−8xy + 2y +5 x~2=0

楕円かな?

627132人目の素数さん2017/05/19(金) 23:42:03.26ID:RS76EPxu
(´・∀・`)ヘー

628132人目の素数さん2017/05/19(金) 23:48:11.02ID:uuDeD2zf
普通にz=に変形して|z|=1使えばいいんじゃないの?

629132人目の素数さん2017/05/20(土) 00:10:02.74ID:UJei35ZN
愚直に割り算をすれば1/zで単位円を写したものを定数倍して平行移動したものになるのはすぐわかる。

630132人目の素数さん2017/05/20(土) 02:03:37.35ID:Dulykbta
中心が-1/3 - 2/3 i で半径が√5/3の円

631132人目の素数さん2017/05/20(土) 03:05:07.36ID:GmArhVtn
愚直に計算して

 3X^2+3Y~2+3X-4Y=0 だね

合同変換例で暗算を期待しているのかな
高校生向きだね

632132人目の素数さん2017/05/20(土) 18:07:10.89ID:I5Ykebcx
第二チェビシェフ関数をψ、Re s>1 として
lim[x→∞] ψ(x)/x^s=0
はどうすれば示せるのでしょうか?

633132人目の素数さん2017/05/20(土) 20:19:43.08ID:I5Ykebcx
>>632
自己解決しました

634132人目の素数さん2017/05/21(日) 00:55:11.91ID:rSkK7lwU
ここに書かれている数学は本来、お飾りのようなもの

さしみのツマとも言える

社会には受験数学だけがあればいい

お飾りが調子に乗るな

635132人目の素数さん2017/05/21(日) 01:02:46.41ID:5tOdvAR7
ここはチラシの裏

636132人目の素数さん2017/05/21(日) 02:04:28.47ID:pJDC0Qhf
>>634
 余裕ない奴...。
 

637132人目の素数さん2017/05/21(日) 10:48:32.89ID:60xEECFz
 ばかだからな

638132人目の素数さん2017/05/21(日) 10:50:15.72ID:60xEECFz
ここはチラシの裏

639132人目の素数さん2017/05/21(日) 12:41:38.20ID:FksNeRVh
下記の5と6は相似と書いてあるようですが、
何をやらせようとしているのでしょうか。
解き方を教えてください。
7は固有値を求めて計算すればいいと思いますが、
8を解けるようにするには、日本の線形代数の本では、
どういう本で何の単元を読めばいいのでしょうか?
易しい本には5、6に関しても載っていませんでした。
よろしくお願いします。

中国語で書かれた画像
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

640132人目の素数さん2017/05/21(日) 13:27:17.95ID:1wi+rVXr
漢字だから、なんとなく意味わからない?
5.行列 D=[ ] と置き、下記の行列が D と相似であるか否か判断せよ。
6.行列 A=[ ] と B=[ ] が相似であるとする。(1) x,y の値を求めよ。
(2) (P^-1)AP=B となる行列 P を求めよ。
行列 A と B が相似というのは、(P^-1)AP=B となる行列 P が存在する
という意味。たいていの本に載っていると思うよ。特にこの問題の場合、
相似の片方が対角行列だから、入門書の固有ベクトルを定義しているあたり
を読めば必ず書いてある。
8.3次行列 A の固有値を 1,2,3 とし、それぞれに対応する固有ベクトルを
α1=(1,1,1)^T  …続きは?

641132人目の素数さん2017/05/21(日) 13:36:01.54ID:4OM3pgv5
そもそもなんでコイツはわざわざ中国語で数学を勉強してんの
意味わからん

642132人目の素数さん2017/05/21(日) 13:44:58.39ID:lEkk8yRz
大学数学などマニアックすぎて必要ない

つうかそういうゴミは隅っこでひっそり生きてればいい

真面目に勤労してる世の中の人にとって、んなもんがあったところで
誰の仕事も楽にはならん

むしろ邪魔だ

数学やるなら数学教育やってる人たちが助かる数学でなければゴミだ

643132人目の素数さん2017/05/21(日) 13:56:53.75ID:FksNeRVh
>>640
下記は分かります。入門書にも載っています。
******************************************
>行列 A と B が相似というのは、(P^-1)AP=B となる行列 P が存在する
> という意味。たいていの本に載っていると思うよ。特にこの問題の場合、
> 相似の片方が対角行列だから、入門書の固有ベクトルを定義しているあたり
> を読めば必ず書いてある。
******************************************
しかし、5番は具体的にどういう問題で
解き方はどうするのでしょうか?
Dと相似な行列を(1)〜(4)から選べということなんですかね。
で、その答は(1)?
高校数学なら中国語で書いてあっても、問題の意味も解法も
すぐに分かるのですが、線形代数はさっぱりです。
よろしくお願いします。

644132人目の素数さん2017/05/21(日) 14:03:15.32ID:K+VIlw/I
問題文を理解しないで解く訓練か

645132人目の素数さん2017/05/21(日) 14:06:22.92ID:e2dasuwX
>>641のもっともな指摘にワロタ

646132人目の素数さん2017/05/21(日) 14:09:48.54ID:FksNeRVh
>>644
違います。知り合いの息子の問題です。以前、高校数学は全部解いてあげたが、
線形代数はさっぱりです。これから勉強しようと思っています。

647132人目の素数さん2017/05/21(日) 14:10:59.26ID:nSd9oPhl
>>643
下記1〜4はそれぞれ相似であるかどうか判断せよ

648132人目の素数さん2017/05/21(日) 14:15:34.62ID:FksNeRVh
>>647
>下記1〜4はそれぞれ相似であるかどうか判断せよ

ありがとうございます。

下記1〜4はDと相似であるか判断せよ。答(1)
ということですか?

649132人目の素数さん2017/05/21(日) 14:16:41.13ID:2n1NR9Kw
>>609 >>614
|f(z) - f(-1/2)|=|f(z) + (1+2i)/3|を計算する。

(√5)/3

650132人目の素数さん2017/05/21(日) 14:19:49.85ID:Q3e2RHk8
>>642
トポロジー(位相的データ解析)を使ってるayadsi社について一言どうぞ
楕円曲線(楕円曲線暗号)使ってるNTTやら日立やら三菱やらにも一言どうぞ

>>643
>Dと相似な行列を(1)〜(4)から選べということなんですかね。
いいえ、(1)〜(4)の各行列がそれぞれDと相似かどうか調べよ、という問題です

651132人目の素数さん2017/05/21(日) 14:26:30.08ID:Q3e2RHk8
>>648
(1)相似(or相似ではない)
(2)相似(or相似ではない)
などと答える問題です

「以下の関数が連続であるかどうか答えよ」みたいな問題みたことない?そんな問題に対して連続関数(の番号)をリストアップして答えることはないと思うけど……

652132人目の素数さん2017/05/21(日) 14:42:55.81ID:FksNeRVh
>>651

ありがとうございます。
そうすると、Dの固有値が2, 2, 3であるから、固有値が2, 2, 3となる行列が
Dと相似であるということなんですか?
6番はAとBの固有値が等しくなるようなx, yの値を求めればよいということ
ですか?

653132人目の素数さん2017/05/21(日) 15:08:51.65ID:FksNeRVh
>>650
問題の意味は分かりました。ありがとうございます。

654132人目の素数さん2017/05/21(日) 15:16:44.83ID:RJHY5q8V
百度で聞けよ

655132人目の素数さん2017/05/21(日) 15:43:14.12ID:lEkk8yRz
>>650
ayadsiは何をしてるか知らん

NTTは携帯電話か?


もっと何が具体的に役に立ってるのか
言わないと分からないぞ

お前らが生きることで誰の労働が助かってるんだ?

656132人目の素数さん2017/05/21(日) 15:46:37.36ID:FksNeRVh
>>654
中国語は分かりません。

657132人目の素数さん2017/05/21(日) 15:50:52.80ID:lEkk8yRz
誰にも理解されん
学問の権威づけにすらならん

車や電話や原発やパソコンなど、何の知識が
どの部分に役立ってるのかも判然としない

パソコンってだけなら技術丸暗記してる技術屋やITドカタ
の方が偉いじゃないか

数学ができること、それを自慢することなんぞどうでもいい
誰の勤勉勤労も楽にしない、クソ以下だ

存在するだけ無駄

658132人目の素数さん2017/05/21(日) 15:51:19.43ID:fKD4sGYy
 
 広告収入で利益を上げる以上、
 スレ管理者は、必要な誘導が必要だと思うんだけれど。
 
 それなしでは
  収入は増えない
 わけだが。行き詰まっているのならそれなりの対応だろ?
 

659132人目の素数さん2017/05/21(日) 15:53:44.24ID:fKD4sGYy
>>657
 それは
  基礎科学が米国だけでしか生き残れない
 という命題に対して肯定なわけで、
 日本の基礎科学否定なわけ。
 
 自分で自分の首を絞めるというのが日本のあり方
 だね。
 

660132人目の素数さん2017/05/21(日) 15:56:30.51ID:fKD4sGYy
>>659の続き
 もし、米国追随の科学を肯定したら、
  日本語の科学は英語でコミュニケーションできない人のための
  補助的な存在
 なわけで、
 最先端ではないのよね。
  本当の真理は英語でしか表されない
 のかねぇ。
 

661132人目の素数さん2017/05/21(日) 15:57:48.38ID:lEkk8yRz
最近乱造されてるバカを騙して金儲けるためだけの
クソ教科書より

大昔からのベストセラーの参考書の方が使えるし

利益誘導も、いい大学行けばいい思いができるぞと生徒学生を
追いつめてる奴らの方が、教育には使える


数学自体が昼あんどん

662132人目の素数さん2017/05/21(日) 15:58:45.22ID:L6cXGa49
>>648
答えは知らん

663132人目の素数さん2017/05/21(日) 16:03:49.94ID:lEkk8yRz
教育が楽しくなること、勉強が面白くなること

それに役立つものはすでにYoutubeとかにあがってる

お前らのようなのは役立たずだ

飯を食うな

664132人目の素数さん2017/05/21(日) 16:13:16.94ID:1wi+rVXr
>>652
固有値が(重複度も含めて)一致することは、
行列が相似であるための必要(不十分)条件。

665132人目の素数さん2017/05/21(日) 16:32:48.17ID:FksNeRVh
>>664
ありがとうございました。

666132人目の素数さん2017/05/21(日) 16:40:27.12ID:mJd63mZs
 ∠CAB = 80
   ∠BPC = ? 答え教えてください
設問の図です 分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚


問題の載ってるサイト
https://pastebin.com/dJf0jQuL

667132人目の素数さん2017/05/21(日) 16:57:36.69ID:FksNeRVh
>>666
接弦定理をつかって∠BPC = 20°

668132人目の素数さん2017/05/21(日) 17:32:49.97ID:lEkk8yRz
他人の仕事を楽にしない奴は人間のクズ

人権はない

ここに書いてる数学が日常の何の役に立ってるか言ってみそ

669132人目の素数さん2017/05/21(日) 17:50:53.49ID:C36sJEhY
自己紹介は不要

670132人目の素数さん2017/05/21(日) 19:24:06.05ID:2n1NR9Kw
>>652
固有ベクトルが(うまく取れば)一致することは、
行列が交換可能であるための必要十分条件?

671132人目の素数さん2017/05/21(日) 19:41:38.73ID:2n1NR9Kw
>>664

固有値が(重複度も含めて)一致する。

固有多項式が一致: det(A-xI) = det(B-xI),
 ↑
P^(-1)(A-xI)P = B-xI,
 
P^(-1)AP = B: A、Bが相似

672132人目の素数さん2017/05/21(日) 21:03:34.65ID:y1u6I5x9
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1482612789?__ysp=55u45a%2B%2B44GZ44KL6Z2i44GMNOe1hOOBguOCiyDmraPlhavop5LlvaI%3D

これとまったく同じ問題なのでが、1番の選択肢は
相対する面が4組ない理由がベストアンサーの解説を呼んでもわかりません

解説していただけないでしょうか

673132人目の素数さん2017/05/21(日) 21:58:19.68ID:K+VIlw/I
なんでURLの後ろにへんなものくっつけるの?

674132人目の素数さん2017/05/21(日) 22:49:19.89ID:8pI6rQ4p
>>668
ここに出ているような線形代数学や微分積分学や集合論は「数学における文字や文法」のようなもので、日常の役に立っている数理科学(計算科学、暗号理論、統計)の基礎になっている
したがって、お前の目の前にある光る箱やら光る板はここにある数学なしには成立しない

>>642でお前が言ってることは「文章の読解力は必要だけど、漢字力や文法知識は不要」という妄言に等しい

675132人目の素数さん2017/05/21(日) 23:01:24.40ID:NEJ4Q+Gi
そういう偉そうなこと言ってますけど、具体的にはどのように使われているのかは知らないでしょうし、実際に作ることもできないんですよね、ここの人達は(笑)

676132人目の素数さん2017/05/21(日) 23:05:26.65ID:mjZUUM/g
どんな悲惨な人生送ったら>>675みたいな醜いコンプレックス抱くようになるんだろうな

677132人目の素数さん2017/05/21(日) 23:07:51.49ID:NEJ4Q+Gi
>>676
ある公理系τの任意のモデルに対してある論理式φが真であれば、τからφがLKにおいて証明可能であることを示せ、という問題がわかりません

678132人目の素数さん2017/05/21(日) 23:11:03.88ID:X3Gi6DL7
あーこいつか

高校数学板で同じこと聞いてたよね

679132人目の素数さん2017/05/21(日) 23:11:59.82ID:NEJ4Q+Gi
何故だか知りませんが、回答がついたことないんですよね
誰もわからないんでしょうか?

680132人目の素数さん2017/05/21(日) 23:14:17.88ID:X3Gi6DL7
でもまず高校数学板で聞くのは頭悪かったよね

681132人目の素数さん2017/05/21(日) 23:15:21.32ID:2mGRzcUc
劣等感婆だろ

682132人目の素数さん2017/05/22(月) 00:07:30.15ID:6DHACu2S
このスレは必要なときに必要な解答を
つけられるように数学専門家が待機しとけばいいだけ

数学自慢バカが偉そうにするところではない

683132人目の素数さん2017/05/22(月) 00:11:37.70ID:81qiX1gZ
>>682
>>677
よろしくお願いします

684132人目の素数さん2017/05/22(月) 00:21:43.41ID:6DHACu2S
数学質問の需要にこたえてるならまだしも
単に知識自慢してるだけなのがこのスレの臭いところ


最悪

685132人目の素数さん2017/05/22(月) 00:22:34.86ID:nkmKvz8G
>>684
なんか嫌な思いでもしたの?

686132人目の素数さん2017/05/22(月) 00:26:40.23ID:6DHACu2S
>>685
働けや雑魚

働けば何が必要かすぐ分かる

できるだけ楽に面白く働きたいだけ

そのためにこのスレはあまり役に立たん

こんな臭くて中途半端に高度なスレがあったら生徒はやる気無くすだけだし

頭使えよ低能

687132人目の素数さん2017/05/22(月) 00:27:54.32ID:81qiX1gZ
>>686
2chに暴言垂れ流す技術は、働く上でどのような役に立つのですか?

688132人目の素数さん2017/05/22(月) 00:30:33.82ID:nkmKvz8G
地雷を踏んだ模様

689132人目の素数さん2017/05/22(月) 00:30:49.56ID:6DHACu2S
>>687
暴言しか通用しないねらーの真正クソ雑魚を正気に戻す効果があるのだ

690132人目の素数さん2017/05/22(月) 00:31:48.54ID:81qiX1gZ
>>689
2chをするのがあなたの仕事なんですか?

691132人目の素数さん2017/05/22(月) 00:32:50.75ID:6DHACu2S
>>690
世間に出すのも恥ずかしい2chのコンテンツを
作り上げたクズどもをシバキあげるのが俺の仕事

692132人目の素数さん2017/05/22(月) 00:33:56.10ID:81qiX1gZ
>>691
無職ってことですか?

693132人目の素数さん2017/05/22(月) 00:34:16.29ID:Q5rjUvjq
>>684
> 数学質問の需要にこたえてるならまだしも
> 単に知識自慢してるだけなのがこのスレの臭いところ
>
>
> 最悪
それが>>677

694132人目の素数さん2017/05/22(月) 00:35:24.64ID:6DHACu2S
>>692
数学板にいるバカなんだから社会を論じるなよ
数学しかできないバカが社会科学で判断を下すべきではない

695132人目の素数さん2017/05/22(月) 00:37:41.99ID:81qiX1gZ
>>694
社会を論じてはいませんよ
あなた自身のことにいて質問しました

696132人目の素数さん2017/05/22(月) 00:37:48.18ID:nkmKvz8G
>>694
どう見ても社会を論じてるのは貴方の方です

697132人目の素数さん2017/05/22(月) 00:38:48.50ID:6DHACu2S
本来なら誰にも知られずごみに捨てられるはずのチラシの裏
とかいいながらおもいっきり全国公開しているバカマヌケの作った
のが2ch


意味不明。チラ裏を一般に公開したバカは死に晒せ

698132人目の素数さん2017/05/22(月) 00:40:50.47ID:6DHACu2S
こんなクソサイト

中途半端に高度すぎる上に

誹謗中傷、煽りの全国公開という最悪で

学生が恥知らずになり、しかも勉強する気無くす効果しかない

699132人目の素数さん2017/05/22(月) 00:43:36.23ID:6DHACu2S
普通の高校生がこんなサイト発見したら
どう思うかくらい考えてからサイト作れよボケ


いっぱしのテレビドラマの方が100倍頭いいぞ


勉強する刺激与える番組は10年前からかなりあったしな

700132人目の素数さん2017/05/22(月) 00:57:33.12ID:xpPLem5X
>>699
テレビドラマ見て喜んでいるバカ

701132人目の素数さん2017/05/22(月) 01:01:57.25ID:hK95pcfK
今日も平和だ

702132人目の素数さん2017/05/22(月) 01:19:13.42ID:IwOEwQUf
数学の話題でないことだけは確か

703132人目の素数さん2017/05/22(月) 06:53:57.40ID:Jy3ue7zC
教科書に、角速度は擬ベクトルだと書いてあるのですが、角速度の擬ベクトルとしての和に意味はあるのでしょうか?

704132人目の素数さん2017/05/22(月) 07:21:39.22ID:WnPJb7lH
和が無意味だとしたら
差も無意味だから
変化量も無意味になって
角速度に関する微分方程式も
無意味になるな

705132人目の素数さん2017/05/22(月) 10:11:00.16ID:UQ7LImpa
ID:6DHACu2S は雑魚

706132人目の素数さん2017/05/22(月) 10:38:58.17ID:4Rc1hsDH
>>703
擬ベクトルてのは、向きの定め方が便宜的なもの
だというだけで、大きさと方向を持つベクトル
であることには変わりがない。和もベクトルの和。

707132人目の素数さん2017/05/22(月) 11:43:10.75ID:jaofwnMy
>>685
劣等感くんは常に嫌な思いしてんだよ

708132人目の素数さん2017/05/22(月) 11:59:52.96ID:ub6TXlML
>>705
 ちゃんとDHAが入ってるからな。(ドコサヘキサエン酸)

709132人目の素数さん2017/05/22(月) 13:28:25.73ID:JGOH/6ft
ABABA・・・と順にABがサイコロ投げ
先に3以上の目を出したら勝ちとします

n回やっても勝敗が決まらない確率



n回以下で勝敗が決まらない確率は

なぜ同じでしょうか。そんなに自明なことではないと思うので
分かりやすい説明をお願いします

710132人目の素数さん2017/05/22(月) 13:31:57.96ID:IwOEwQUf
「n回やっても〜ない」=「n回以下で〜ない」
確率以前の話だが

711132人目の素数さん2017/05/22(月) 13:36:40.01ID:JGOH/6ft
だから分かりやすく説明しろつってんだよボケが
威張り散らしてんじゃねえクソゴミ

712132人目の素数さん2017/05/22(月) 13:37:54.65ID:YcnOdjfd
いきなり切れる人すこ

713132人目の素数さん2017/05/22(月) 13:39:02.39ID:nkmKvz8G
質問者は国語力に重大な欠陥を抱えてるって言ったろ

714132人目の素数さん2017/05/22(月) 13:43:08.55ID:JGOH/6ft
だから分かりやすく説明しろつってんだよボケが

715132人目の素数さん2017/05/22(月) 14:32:43.02ID:IwOEwQUf
日本語では難しいなら、
まず母国語が何語かを書こうね。

716132人目の素数さん2017/05/22(月) 15:23:26.85ID:SmkbUf6k
>>709
例えば、nの値が3だとしよう。

「3回やっても勝敗が決まらない確率」というのは
1回めのサイコロ投げ → 勝敗が決まらない →
2回めのサイコロ投げ → 勝敗が決まらない →
3回めのサイコロ投げ → 勝敗が決まらない
わけだから、「3回やっても勝敗が決まらない確率」というのは
「1回やっても勝敗が決まらない確率」と
「2回やっても勝敗が決まらない確率」を含む

だから、「3回やっても勝敗が決まらない確率」は
「3回以下で勝敗が決まらない確率」と同じ。

717132人目の素数さん2017/05/22(月) 16:10:08.26ID:JGOH/6ft
>>716
まあそもそもこの論理が分かるほどの「科学オタク」は
今の日本にはいらんけどね

ここまで徹底して形式論理が分かるような奴は逆にキモイ

普通すぎて、何も生まないだろう

718132人目の素数さん2017/05/22(月) 16:20:35.88ID:6j80gEZq
暑さで頭をやれたのか、可哀相に

719132人目の素数さん2017/05/22(月) 16:22:23.52ID:JGOH/6ft
確率の排反事象という事実自体、あるいは論理集合は
人気が無くて誰も覚えない

それに比べて、標準偏差や相関係数と言った具体的な物は
面白いのでみんな覚えている

数1Aの論理は哀れだな

720132人目の素数さん2017/05/22(月) 16:28:04.58ID:JGOH/6ft
>>716
まあそもそもこの問題自体、ひっかけ問題なのバレバレで

3回で、と書けばいいところをわざわざ3回以下とか
書いてるから解けなくてもかまわんのだが

721132人目の素数さん2017/05/22(月) 16:31:28.77ID:nkmKvz8G
な、俺の言った通りだろ

722132人目の素数さん2017/05/22(月) 16:38:18.13ID:nhx14RG9
説明を頂戴しといて受け入れない奴ってどういう思考回路してるんだろう

723132人目の素数さん2017/05/22(月) 16:40:48.16ID:6j80gEZq
アスペだろ

724132人目の素数さん2017/05/22(月) 16:42:28.83ID:Kzu/T+pg
「俺が分からない説明を垂れ流すキチガイは荒らしなので殺すべき」
そんな感じでね

725132人目の素数さん2017/05/22(月) 17:26:42.39ID:JGOH/6ft
225とのLCDが15で、1998とのLCDが111になる
自然数ってどうやったら求まりますか

726132人目の素数さん2017/05/22(月) 19:20:12.75ID:IwOEwQUf
LCDって何や?

727132人目の素数さん2017/05/22(月) 19:39:51.11ID:JANYSqVZ
Least Common Multiple
{Greatest, Highest} Common {Divisor, Measure, Factor}

728132人目の素数さん2017/05/22(月) 19:45:31.40ID:JANYSqVZ
225=(3*5)*(3*5)
1998=(3*37)*(2*3*3)

求めるのは、2,3,5を約数に持たない自然数nを用いて(3*5*37)nで表される数

729132人目の素数さん2017/05/22(月) 20:08:39.31ID:JGOH/6ft
>>728
説明になってない
意味不明

730132人目の素数さん2017/05/22(月) 20:14:22.02ID:YcnOdjfd
もう構ってやるなや

731132人目の素数さん2017/05/22(月) 20:15:02.03ID:89o3D8y/
>>726
最大公約数
>>728

732132人目の素数さん2017/05/22(月) 20:26:57.86ID:JANYSqVZ
>>729
だから
555 (n=1)
3885 (n=7)
6105 (n=11)
7215 (n=13)
9435 (n=17)

が求める数

あとLCDって何の略?

733132人目の素数さん2017/05/22(月) 20:35:45.57ID:JGOH/6ft
>>732

2,3,5を約数に持たない自然数がどっからでてきたのかわからん
何で37は関係ないのか

734132人目の素数さん2017/05/22(月) 20:41:37.46ID:JANYSqVZ
nの約数に2,3,5が含まれていた場合、a=555nは
225=(3*5)*(3*5)
1998=(3*37)*(2*3*3)
の右側の()内の約数と共通の約数を持つことになるから
これで分からないなら諦めたほうがいい

そんなことより、LCDって何の略?
カッコつけて間違えて使っちゃったの?wwwww

735132人目の素数さん2017/05/22(月) 20:48:22.88ID:JGOH/6ft
>>734
Largest Common Divisor

の略なんだがお前には英語力がないのか?

736132人目の素数さん2017/05/22(月) 20:50:17.02ID:a3RbCAsM
Least Cash Debt

737132人目の素数さん2017/05/22(月) 20:50:21.99ID:JGOH/6ft
>>734
その問題は捨て問だから理解できる方が恥なんだがな

738132人目の素数さん2017/05/22(月) 20:51:26.72ID:JGOH/6ft
普通は捨てる問題なんだけど
数学キチなら分かると思って
質問しただけのこと

739132人目の素数さん2017/05/22(月) 20:53:17.76ID:ifIOElFz
アドバイスだけと、大学受験板とか受験サロンでやった方が釣れる

740132人目の素数さん2017/05/22(月) 20:54:56.40ID:PoYep8DK
馬鹿ビッパーだろ

741132人目の素数さん2017/05/22(月) 21:09:29.09ID:J/y2QWMN
キチガイの相手すんなよ

742132人目の素数さん2017/05/22(月) 21:23:48.18ID:AMRb9L8B
下記の3×3行列(4,2,3; 2,1,2; -1,-2,0)についt

 4 2 3
2 1 2
-1 -2 0
これの固有値は1(重解)3
ところが、固有値1に対する固有ベクトルが1つしか
とれないので対角化できない。

以上の考え方でよろしいでしょうか?

743132人目の素数さん2017/05/22(月) 21:34:07.76ID:SmkbUf6k
基地外の相手をしてしまった

744132人目の素数さん2017/05/22(月) 21:35:05.15ID:Sz9z0LKh
∫[a,b]{(x-a)(b-x)}^1/2 dx
を無限遠の留数を考えた時に、留数の総和が0になることを利用して解け、という問題ができません
どうかよろしくお願いします

745132人目の素数さん2017/05/22(月) 21:36:21.17ID:IwOEwQUf
>>742
よろしいでしょう。

746132人目の素数さん2017/05/22(月) 22:21:22.47ID:FbxzscE1
ある線形写像f:R^2→R^2について
f((x,y))はある定数kにより(kx,ky)と記述出来ますか?
そうならばそれはどのように示せますか?
そうでないならばどんなことが言えますか?

747132人目の素数さん2017/05/22(月) 22:39:01.94ID:mD8czhFu
>>746
できないです
2*2行列Aを用いてf((x,y))=A(x,y)なら言えます

748132人目の素数さん2017/05/22(月) 22:39:40.89ID:IwOEwQUf
>>746
言えること。
線形写像には、f((x,y))=(kx,ky) 以外にもいろんなものがある。

749132人目の素数さん2017/05/22(月) 23:02:05.37ID:IwOEwQUf
>>744
一次変換でえんちゃうの?

(x-a)(b-x) = -x^2 +(a+b)x -ab
= -{x - (a+b)/2}^2 + {(b-a)/2}^2
= {(b-a)/2}^2 {1 - {2x/(b-a) - (a+b)/(b-a)}^2}
より
t = 2x/(b-a) - (a+b)/(b-a) と置いて、

∫[a,b] √(x-a)(b-x) dx
= ∫[-1,1] {(b-a)/2}√{1 - t^2} {(b-a)/2}dt 
= {(b-a)/2}^2 ∫[-1,1] √{1 - t^2} dt
= {(b-a)/2}^2 π/2
= (π/8)(b-a)^2

750132人目の素数さん2017/05/22(月) 23:05:01.23ID:AMRb9L8B
>>745
>よろしいでしょう。

ありがとうございます。

751132人目の素数さん2017/05/22(月) 23:06:10.08ID:AMRb9L8B
行列 A=(1,-1,1;2,4,-2;-3,-3,5)の固有値は
2(重解),6で、P^(-1)・A・Pで対角化するとき
P=(1,0,3;0,1,-2;1,1,3)として下記サイトで
計算すると対角行列になっていませんでした。
どこが誤りなのでしょうか?
http://keisan.casio.jp/exec/system/1278758277

752132人目の素数さん2017/05/22(月) 23:12:07.97ID:IwOEwQUf
>>751
6 の固有ベクトルが違う。
P=(1,0,1;0,1,-2;1,1,3) とすればいい。

753132人目の素数さん2017/05/22(月) 23:26:01.53ID:Sz9z0LKh
>>749
返信ありがとうございます
確かにそうなんですけど、問題の解き方に指定があるんです
その解き方が留数の総和の法則を使ったやつなので…
このひとつ前の小問に ∫[a,b] x/{(x-a)(b-x)}^1/2 dx というのがありまして…
解き方の指定は同じなのですがこれを使うのですかね?

754132人目の素数さん2017/05/23(火) 00:48:52.59ID:0csr0lNr
そうかもしれん、そうでもないかもしれん

755132人目の素数さん2017/05/23(火) 01:26:32.69ID:s60L5EQL
>>752
ありがとうございます。
明日やってみます。

756132人目の素数さん2017/05/23(火) 11:51:18.10ID:s60L5EQL
3×3の行列Aが対角可能ならば対角化せよ
という問題があったとき、固有ベクトルが
固有値の重複度に応じて求まり、
P^(-1)APで対角化しようとするとき、
固有値が求まっているので、求める対角行列は
分かっていますよね。このとき、P^(-1)をわざわざ
求めて、P^(-1)APを具体的に行列で書く必要は
ありますか?学校の宿題程度の場合ですが。

757132人目の素数さん2017/05/23(火) 12:10:00.69ID:R2s4PFK4
オワコン刑事板の保守は自演あるのみ

758132人目の素数さん2017/05/23(火) 13:04:10.33ID:PgBM1K7S
>>756
掃き出しみたいな単因子法でJordan標準形にしちまえばPは不要

759132人目の素数さん2017/05/23(火) 13:10:09.16ID:JUgkRWdA
>>756

Pは固有ベクトルを並べたもの
P = (u1, u2, u3)
だから
AP = (λ1・u1, λ2・u2,λ3・u3) = PD
はすぐ出るけど...

P^(-1)を求めるのは面倒ぢゃね?

760132人目の素数さん2017/05/23(火) 13:33:52.04ID:s60L5EQL
>>759
ありがとうございます。
ということは P^(-1)APを具体的に行列で書くことは、ふつうはしない?

761132人目の素数さん2017/05/23(火) 13:36:10.66ID:JUgkRWdA
>>744 >>749

(a,0)−(b,0) を直径とする半円の面積、でえんちゃうの?

762132人目の素数さん2017/05/23(火) 13:51:42.39ID:s60L5EQL
例えば、3×3の行列(2,0,0;0,2,0;0,0,3)
の固有値や固有ベクトルというのはどのように
考えたらいいのでしょうか?
ふつうのやり方では、固有値が2,2,3となるが
これに対応する固有ベクトルはゼロベクトルで
あるから、2,2,3は固有値とは言えない
と考えていたのですが、2×2の行列で
「対角行列の固有ベクトルは(1,0),(0,1)であり
すべての対角行列は、これを共有する」と書いて
あったりします。そうすると3×3の固有ベクトル
は(1,0,0),(0,1,0),(0,0,1)ということになるのですか?
これはどうやって求めるのでしょうか?
ふつうのやり方では、求めようとするとゼロベクトルに
なりませんか?

763132人目の素数さん2017/05/23(火) 13:57:30.86ID:JUgkRWdA
>>753
分子を
 x → x-(a+b)/2 + (a+b)/2
と分けると、第1項は対称性により0.
第2項は∫[a,b] 1/√{(x-a)(b-x)} dx = π,
というのがありまして… これを使うのですかね?

764132人目の素数さん2017/05/23(火) 13:59:25.96ID:s60L5EQL
>>758
>掃き出しみたいな単因子法でJordan標準形にしちまえばPは不要

ありがとうございます。
まだ勉強不足でよく分からないのですが、あとで考えます。

765132人目の素数さん2017/05/23(火) 14:20:22.06ID:070vwbQC
>>762
>これに対応する固有ベクトルはゼロベクトルで
>あるから、2,2,3は固有値とは言えない

何を言っているのか、よくわからない。

A=(2,0,0;0,2,0;0,0,3) のとき
固有多項式 det(xI-A)=(x-2)(x-2)(x-3) の
解は x=2,2,3 で、これが A の固有値だが、
対応する固有ベクトルは (A-xI)v=0 の解 v。

x=3 に対して A-xI=
-1 0 0
0 -1 0
0 0 0
より、v=(0,0,1) が解の一例となる。
x=2 に対して A-xI=
0 0 0
0 0 0
0 0 1
より、v は二次元部分空間をなし、
(1,0,0),(0,1,0) がその基底となる。

固有値 3 の固有ベクトルが (0,0,r), rは実数
であって、ひとつに決まらないのと同様に、
固有値 2 の固有ベクトルは上記の二次元空間の
元であって、2個に決まるわけではない。
むしろ、重複しない固有値についても、一次元の
固有空間から基底をとりだしたと見るほうがいい。
P を構成するのに必要なのは、固有空間の基底
だから、上記の v がわかれば足りることになる。

これが、ふつうのやり方。ゼロベクトルにはなりません。

766132人目の素数さん2017/05/23(火) 14:44:18.56ID:s60L5EQL
>>765
>これが、ふつうのやり方。ゼロベクトルにはなりません。

勉強になりました。
大変、感謝しています。ありがとうございました。

767132人目の素数さん2017/05/23(火) 14:51:57.15ID:070vwbQC
>>753
留数の総和の法則てのは、おそらく留数定理のこと
を言ってるんだろけど、
被積分関数 √{(x-a)(b-x)} が分岐点を持つので、
このままの形では、留数定理とは相性が悪い。

x = a(1-t) + bt で置換して
∫[a,b] √{(x-a)(b-x)} dx
= (b-a)^2 ∫[0,1] {(t^1/2)(1-t)^1/2} dt
= (b-a)^2 Β(3/2,3/2)
= (b-a)^2 Γ(3/2)Γ(3/2)/Γ(3)
= (b-a)^2 {(1/2)Γ(1/2)}^2/{2!}
だから、
Γ(1/2) = √π を求めるのに留数定理を使ったらどうか。
ガウス積分の計算は、通常、留数定理を使う。

768132人目の素数さん2017/05/23(火) 15:11:54.04ID:x537Jq0X
日本人は劣等人種

数学は所詮理性の復讐

無益にして醜悪

769132人目の素数さん2017/05/23(火) 16:24:01.27ID:sDQpFnNS
テヨーン

770132人目の素数さん2017/05/23(火) 16:34:29.06ID:iQYA8JYz
日本人は数学クッソ苦手だけどな

771132人目の素数さん2017/05/23(火) 17:10:12.10ID:WCgr3/J4
線形写像f:R^2→R^2がf=f^-1を満たすならばfはどのようになるのでしょうか

772132人目の素数さん2017/05/23(火) 17:29:57.96ID:HlUFpz68
f^n n=1,2,3,4,......

を考えてご覧

773132人目の素数さん2017/05/23(火) 17:31:28.64ID:sK7q4yVf
どうにもならん

774132人目の素数さん2017/05/23(火) 17:49:08.52ID:s60L5EQL
下記問題について
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

5番の問題の意味を「A1〜A4がDと相似であるかどうかを調べよ」
と解釈して次のように考えました。
問題の解釈が正しいとすれば、以下の考え方でよろしいでしょうか。

A1〜A4の固有値は、すべてDの固有値に等しい。

A1は固有ベクトル(1,0,0),(0,1,0),(0,0,1)をとることが
できて対角化可能よってDと相似

A2は固有値2が重解であるが、これに対する固有ベクトルを
2つとることができないので対角化できない。よって相似ではない。

A3は固有ベクトル(1,0,0),(0,1,0),(1,0,1)をとることができて
対角化可能よってDと相似

A4は固有値2が重解であるが、固有ベクトルを2つとることが
できないので、対角化できないよってDと相似ではない。

6番は「AとBが相似となるようにx,yの値を定めよ」と解釈しました。
 解釈が正しいとすれば答は x=0, y=1

775132人目の素数さん2017/05/23(火) 18:00:35.79ID:sK7q4yVf
またシナ竹か

776132人目の素数さん2017/05/23(火) 19:17:20.74ID:070vwbQC
>>774
解釈したっていうか、
>>639-640で、題意を質問してたあれだよね。
答えは合っている。
8.の問題文の続きは、どうした?

777132人目の素数さん2017/05/23(火) 19:44:15.16ID:070vwbQC
>>771
f:x→Ax,
A=(a,b;c,d)=
   a   b
   c   d
と置いて、
A^2 = I, I = (1,0;0,1)
を解く。

A=±I
または
A=(a,b;c,-a), bc=1-a^2

778132人目の素数さん2017/05/23(火) 20:08:51.17ID:s60L5EQL
>>776
ありがとうございます。

8番は先々でやろうと思っています。
それで、こういうのを見たとき、すぐに問題の意味を
悟って解けるようになるためにはどういう本を読めば
いいか知りたかったわけです。

779132人目の素数さん2017/05/23(火) 20:31:41.11ID:pLDEKmOx
>>778
NHKテレビ中国語講座では
数学用語までは扱わないかなあ。

780132人目の素数さん2017/05/23(火) 20:35:34.12ID:s60L5EQL
>>776
昨日5番の問題の意味を教えてくださった方ですね。
IDを見てプロの数学者だと思っています。
8番は途中で切れていたのですね。
意味も大体わかりました。
8番
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

781132人目の素数さん2017/05/23(火) 20:49:36.33ID:sK7q4yVf
プロの数学者

782132人目の素数さん2017/05/23(火) 21:26:38.03ID:s60L5EQL
>>781
アマチュアの数学者もいるので

783132人目の素数さん2017/05/23(火) 23:01:55.82ID:OMa3/IF3
Aを固有値1,2,3を持つ三次行列とする。それぞれの固有値に対する固有ベクトルを(中略)とするとき、A+A^3を求めよ。……かな?

784132人目の素数さん2017/05/23(火) 23:23:39.50ID:s60L5EQL
>>783
ありがとうございます。

785132人目の素数さん2017/05/24(水) 00:30:43.04ID:m9NR2bVf
>>780
プロじゃありませんよ。プロは多分、こういうとこで質問に答えたりしない。

「求矩陣 A 和 A^3」は、「行列 A および A^3 を求めよ」でしょうね。
http://chinese.sblo.jp/article/3687821.html
「A+A^3 を求めよ」なら、「求矩陣 A 加 A^3」とでも書くのかな。
http://www.las.osakafu-u.ac.jp/~kiyohara/cgi-bin/sb/log/eid1028.html

いづれにせよ、>>774 ができたということは、この 8.もできるはずです。
D=(P^-1)AP を A=PD(P^-1) に変形するだけだから。
A^3={PD(P^-1)}^3=PD(P^-1)PD(P^-1)PD(P^-1)=P(D^3)(P^-1) は
対角化した行列の取り扱いの基本(というか対角化の主目的)ですね。

786132人目の素数さん2017/05/24(水) 00:55:22.21ID:yUsBV0WE
へのつっぱりにもならん数学ばっか

787132人目の素数さん2017/05/24(水) 01:23:58.80ID:kjfhkgK2
>>785
ありがとうございます。
数学のプロだと思います。

788132人目の素数さん2017/05/24(水) 15:29:40.01ID:mBSrpIs8
そこは?傅だろ

789132人目の素数さん2017/05/24(水) 19:56:55.33ID:DFToadP5
A = (a_i_j) を n 次正方行列とする。

σ、 τ ∈ S_n とする。

n 次正方行列 (a_σ(i)_τ(j)) が上三角行列となるような σ、 τ ∈ S_n が存在するための
必要十分条件をグラフ理論を用いて述べよ。

この問題の解答をお願いします。

790132人目の素数さん2017/05/24(水) 19:57:43.86ID:DFToadP5
A = (a_i_j) を n 次正方行列とする。

σ、 τ ∈ S_n とする。

n 次正方行列 (a_σ(i)_τ(j)) が上三角行列となるような σ、 τ ∈ S_n が存在するための
必要十分条件をグラフ理論的に述べよ。

この問題の解答をお願いします。

791132人目の素数さん2017/05/24(水) 20:20:17.33ID:goD7FhMM
こちらこそよろしく

792132人目の素数さん2017/05/24(水) 21:44:11.82ID:OGMwYjIb
http://www.dms.umontreal.ca/~andrew/Courses/Chapter10.pdf
このpdfの1pで、10.1.1から10.1.2を示す流れが何をやっているのか(日本語に訳しても)さっぱり分かりません。どなたか教えて頂けないでしょうか?

793132人目の素数さん2017/05/24(水) 21:55:58.94ID:goD7FhMM
難しいね

794132人目の素数さん2017/05/24(水) 22:51:29.25ID:ZmPYiliU
こんな高度な数学を英語で理解して、って作業で

脳ミソにいいことでもあるのか

こんなことやって禿げたり早死にしたり脳梗塞になる奴はバカだぞ



それでも社会に貢献したいっていう偉い人は別だがな

795132人目の素数さん2017/05/24(水) 22:52:52.70ID:xL483/Ae
複素関数は解ってんの?

796132人目の素数さん2017/05/24(水) 22:56:58.35ID:JFO8dO1L
10章しか読んでいない

797132人目の素数さん2017/05/24(水) 23:02:27.89ID:JFO8dO1L
訂正
10.1節しか読んでいません、キリィ

798132人目の素数さん2017/05/24(水) 23:39:26.35ID:JFO8dO1L
訂正
極がわかりません

799132人目の素数さん2017/05/24(水) 23:41:35.82ID:HnHDw5ml
留数定理ってうつくしいですよね

800132人目の素数さん2017/05/24(水) 23:42:51.06ID:ZmPYiliU
模擬試験を受けると全滅状態の点数しかとれない
というリアルを叩きつけられているにもかかわらず
問題を解説しても分かった気になるだけで次の模試
で点とるために問題を覚え込もう、使いこなせるように
しようとしない生徒ってどうすればいいんですか

801132人目の素数さん2017/05/24(水) 23:47:10.14ID:JFO8dO1L
またお前か

802132人目の素数さん2017/05/25(木) 00:05:59.02ID:PShgFEPT
>>795
コーシーの積分定理とか留数定理、ローラン展開など基本的なことしか分からないです。
具体的にどんな知識を使うかが分かれば勉強できるのですが、複素関数のどのあたりの知識を使ってるのか分からないので……

803132人目の素数さん2017/05/25(木) 01:16:13.20ID:VIq9d7HX
お前には無理

804132人目の素数さん2017/05/25(木) 06:05:38.32ID:M//NT7G1
Kは体, LはKの代数閉包。
f(x)=x^2+ax+b, g(x)=x^2+cx+d はK上の既約多項式で重根をもたず、fの根を α_1,α_2∈L, gの根を β_1,β_2∈L とする。
K(α_1),K(β_1) はKの2次拡大体となる。
K(α_1)≠K(β_1) を仮定する。
γ_1=α_1β_1+α_2β_2,
γ_2=α_1β_2+α_2β_1 とおく。
K(γ_1)がKの2次拡大であることおよび K(γ_1)≠K(α_1),K(β_1) を示せ。
(雪江 代数学2 演習)

805132人目の素数さん2017/05/25(木) 06:05:59.13ID:M//NT7G1
誘導などから分かっていること
K(α_1)=K(α_2) (∵α_2=-a-α_1),
K(β_1)=K(β_2) (同様)

[K(α_1,β_1):K]=4,
K(α_1,β_1)⊃K(γ_1)⊃K

γ_1-γ_2=(α_1-α_2)(β_1-β_2)≠0,
γ_1+γ_2=ac∈K,
γ_1γ_2=aad+ccb-4bd∈K
より
h(x)=(x-γ_1)(x-γ_2) はK上の2次多項式。既約かどうかは不明。よって
[K(γ_1):K]は1か2,
K(γ_1)=K(γ_2)

806132人目の素数さん2017/05/25(木) 10:02:46.79ID:i9SVXHWB
x>=x, y>=z
ならば
x=z 推移律

よくわかんないお…

807132人目の素数さん2017/05/25(木) 10:38:11.85ID:PShgFEPT
>>792
-Nからcの帯状領域を囲む閉路の積分と考えればいいのだろうと考えました。
しかし、s=1と自明な零点での留数の求め方が分かりません。
式を見る限り、lim[s→ρ](s-ρ){-ζ’(s)/ζ(s)}=1(ρは1か自明な零点)と成りそうなのですが、どうしてそうなるのか分からないです。
どなたかよろしくお願いします。

808132人目の素数さん2017/05/25(木) 11:37:58.05ID:jO5g+o2q
いやどす

809132人目の素数さん2017/05/25(木) 12:43:24.18ID:cm8BNe/B
>>802
そんだけ分かれば充分だろ

810132人目の素数さん2017/05/25(木) 14:10:21.51ID:Jrz404t0
留数の計算ができてもそれだけでは困ります

811◆2VB8wsVUoo 2017/05/25(木) 15:43:14.34ID:R56WRUD5

812◆2VB8wsVUoo 2017/05/25(木) 15:43:34.37ID:R56WRUD5

813◆2VB8wsVUoo 2017/05/25(木) 15:43:54.30ID:R56WRUD5

814◆2VB8wsVUoo 2017/05/25(木) 15:44:15.63ID:R56WRUD5

815◆2VB8wsVUoo 2017/05/25(木) 15:44:34.84ID:R56WRUD5

816◆2VB8wsVUoo 2017/05/25(木) 15:44:56.89ID:R56WRUD5

817◆2VB8wsVUoo 2017/05/25(木) 15:45:17.12ID:R56WRUD5

818◆2VB8wsVUoo 2017/05/25(木) 15:45:38.39ID:R56WRUD5

819◆2VB8wsVUoo 2017/05/25(木) 15:46:00.90ID:R56WRUD5

820◆2VB8wsVUoo 2017/05/25(木) 15:46:28.11ID:R56WRUD5

821132人目の素数さん2017/05/25(木) 18:19:43.37ID:/hDMwyS6
>>790

Philip N. Klein "Coding the matrix"
p.207
Problem 4.6.12:
(For the student with knowlege of graph algorithms) Design an algorithm that,
for a given matrix, finds a list of a row-labels and a list of column-labels with
respect to which the matrix is triangular (or report that no such lists exist).

↑の問題を解きたくて質問しました。

ちなみに、↑の本での実行列の定義は、

U, V を有限集合とするとき、 U × V から R への写像のことを実行列という

です。

U が行ラベルで
V が列ラベルです。

で、答えが分かりました。
O(n!) のアルゴリズムは分かりました。

U = {u_1, u_2, …, u_n}
V = {v_1, v_2, …, v_n}

行ラベルの順序を固定する。
[u_1, u_2, …, u_n]

列ラベルの n! 個ある順列
[v_τ(1), v_τ(2), …, v_τ(n)]
のそれぞれに対して、

以下の画像の問題の答えとなるアルゴリズムを修正(セルフループの除去)して使えばよい。

分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

822132人目の素数さん2017/05/25(木) 18:26:11.59ID:/hDMwyS6
あ、 O(n!) ではないですね。

もっと計算時間がかかりますね。

8238042017/05/25(木) 22:04:40.80ID:M//NT7G1
大学以上質問スレッドというのがあることがわかったからそっちにも質問した

824132人目の素数さん2017/05/25(木) 22:26:53.09ID:ccF9ZUgO
とても稚拙な問題なんだけど900*1.1と900/0.9はなぜ答えが異なるんだ?どっちも1割載せてるんじゃないのか?

825132人目の素数さん2017/05/25(木) 22:32:19.22ID:PkBz+Whn
>>824
何を10割としているのかが違うから

826132人目の素数さん2017/05/25(木) 22:34:49.85ID://nVSL4r
1.1 != 1/0.9

827132人目の素数さん2017/05/25(木) 22:47:22.22ID:iutu3c70
>>824
二八蕎麦の外2か内2かの違いのようなもんだな。

828132人目の素数さん2017/05/25(木) 23:02:57.35ID:YadDGJEN
今何時だい?

829132人目の素数さん2017/05/25(木) 23:05:23.12ID:9bAaLKTo
お後がよろしいようで

830132人目の素数さん2017/05/25(木) 23:20:52.54ID:M//NT7G1
11/10 と 10/9 は等しくないから

831132人目の素数さん2017/05/25(木) 23:23:50.28ID:Hu/ZU2RV
1割減の1割増は元の99%しかない

832132人目の素数さん2017/05/25(木) 23:36:08.77ID:YadDGJEN
デテケ、デテケ

833132人目の素数さん2017/05/26(金) 00:01:42.97ID:0vDv4vo+
>>827
外2だったら、八じゃないじゃん。詐欺。

834132人目の素数さん2017/05/26(金) 02:31:10.95ID:GrYD26iA
>>825
>>830
ありがとう。なんとなくは分かるんだけど…仕事で掛率の計算してて、ふと疑問に思って解決出来なくて力を借りたい。凄く頭の悪い質問で申し訳ないが。
弊社の利益が原価の1割で中間業者のマージンも一割で、って計算しててなぜか1.1をかける時と0.9で割るときとがあってムズムズしてるんだ。
ブラック企業のブラック人材の素朴な疑問を解消してくれ頼む!

835◆2VB8wsVUoo 2017/05/26(金) 04:02:10.09ID:iCP5fMHR

836◆2VB8wsVUoo 2017/05/26(金) 04:02:30.36ID:iCP5fMHR

837◆2VB8wsVUoo 2017/05/26(金) 04:02:50.35ID:iCP5fMHR

838◆2VB8wsVUoo 2017/05/26(金) 04:03:10.77ID:iCP5fMHR

839◆2VB8wsVUoo 2017/05/26(金) 04:03:33.92ID:iCP5fMHR

840◆2VB8wsVUoo 2017/05/26(金) 04:03:54.51ID:iCP5fMHR

841◆2VB8wsVUoo 2017/05/26(金) 04:04:14.43ID:iCP5fMHR

842◆2VB8wsVUoo 2017/05/26(金) 04:04:34.75ID:iCP5fMHR

843◆2VB8wsVUoo 2017/05/26(金) 04:04:59.66ID:iCP5fMHR

844◆2VB8wsVUoo 2017/05/26(金) 04:05:17.83ID:iCP5fMHR

845132人目の素数さん2017/05/26(金) 04:30:02.13ID:zlfowS6a
原価に、原価の1割利益をのせるなら
価格 = 原価 + (原価 x 0.1) = 原価 x 1.1

原価に、価格の1割になるような利益をのせるのなら
価格 = 原価 + (価格 x 0.1) = 原価 / 0.9

846◆2VB8wsVUoo 2017/05/26(金) 11:20:55.43ID:iCP5fMHR

847◆2VB8wsVUoo 2017/05/26(金) 11:21:13.33ID:iCP5fMHR

848◆2VB8wsVUoo 2017/05/26(金) 11:21:32.14ID:iCP5fMHR

849◆2VB8wsVUoo 2017/05/26(金) 11:21:50.98ID:iCP5fMHR

850◆2VB8wsVUoo 2017/05/26(金) 11:22:08.84ID:iCP5fMHR

851◆2VB8wsVUoo 2017/05/26(金) 11:22:28.19ID:iCP5fMHR

852◆2VB8wsVUoo 2017/05/26(金) 11:22:48.11ID:iCP5fMHR

853◆2VB8wsVUoo 2017/05/26(金) 11:23:08.46ID:iCP5fMHR

854◆2VB8wsVUoo 2017/05/26(金) 11:23:27.70ID:iCP5fMHR

855◆2VB8wsVUoo 2017/05/26(金) 11:23:49.17ID:iCP5fMHR

856132人目の素数さん2017/05/26(金) 11:30:10.41ID:ECbWze8A
>>834
仕事だと小学校で習ったような考え方と違ったりするので数学板向きじゃないらしい
算数・数学では原価を基準とするけど会計の損益計算だと売価を基準にするのが普通らしい
どっちなのかをきちんと把握しないと混乱して当然

857132人目の素数さん2017/05/26(金) 13:55:13.45ID:b4C3uWPC
迷言
小学校で習ったような考え方は数学板向き

858132人目の素数さん2017/05/26(金) 13:58:29.34ID:f/rWqJk9
実数上の右連続関数で不連続点が実数と同じくらい存在する関数って存在するの?
ネットでググったら、右連続かつ左極限が存在する関数の不連続点は高々可算個っていうのばかり出るんだけど、左極限が存在するっていう仮定は必要なんですかね?

859132人目の素数さん2017/05/26(金) 14:38:15.71ID:ZUBN9cfT
小学校で習ったような考え方と違ったりするので数学板向きじゃない



小学校で習ったような考え方は数学板向き

に変換されちゃうデジタル思考の馬鹿

860132人目の素数さん2017/05/26(金) 14:53:25.76ID:b4C3uWPC
馬鹿のプライドが傷つきました

861◆2VB8wsVUoo 2017/05/26(金) 14:57:35.49ID:iCP5fMHR

862◆2VB8wsVUoo 2017/05/26(金) 14:57:57.08ID:iCP5fMHR

863◆2VB8wsVUoo 2017/05/26(金) 14:58:20.42ID:iCP5fMHR

864◆2VB8wsVUoo 2017/05/26(金) 14:58:42.99ID:iCP5fMHR

865◆2VB8wsVUoo 2017/05/26(金) 14:59:05.77ID:iCP5fMHR

866◆2VB8wsVUoo 2017/05/26(金) 14:59:29.68ID:iCP5fMHR

867◆2VB8wsVUoo 2017/05/26(金) 14:59:55.06ID:iCP5fMHR

868◆2VB8wsVUoo 2017/05/26(金) 15:00:18.04ID:iCP5fMHR

869◆2VB8wsVUoo 2017/05/26(金) 15:00:41.96ID:iCP5fMHR

870◆2VB8wsVUoo 2017/05/26(金) 15:01:05.21ID:iCP5fMHR

871132人目の素数さん2017/05/26(金) 15:02:34.35ID:ZUBN9cfT
よしとけ、よしとけ
論理的ミスくらい誰だってするんだから、はいそうですねと言っておけばいいんだよ

872132人目の素数さん2017/05/26(金) 16:18:10.81ID:voHJNIND
自然数nを3つの平方の和のに分解するのどうすればいいんだ?
n≡7(mod8)の場合以外はできるはずなんだが

873132人目の素数さん2017/05/26(金) 16:48:04.17ID:TYDAnHIL
はいそうですね

874132人目の素数さん2017/05/26(金) 18:55:48.21ID:9+QivcSx
>>858
関数を適当に延長すればいいじゃない

875132人目の素数さん2017/05/26(金) 19:07:34.28ID:iJvQTwRt
>>874
馬鹿なの?

876132人目の素数さん2017/05/26(金) 19:09:28.46ID:wGlJSy0m
はいそうですね

877◆2VB8wsVUoo 2017/05/26(金) 19:20:45.97ID:iCP5fMHR

878◆2VB8wsVUoo 2017/05/26(金) 19:21:03.63ID:iCP5fMHR

879◆2VB8wsVUoo 2017/05/26(金) 19:21:21.88ID:iCP5fMHR

880◆2VB8wsVUoo 2017/05/26(金) 19:21:39.49ID:iCP5fMHR

881◆2VB8wsVUoo 2017/05/26(金) 19:21:59.27ID:iCP5fMHR

882◆2VB8wsVUoo 2017/05/26(金) 19:22:17.76ID:iCP5fMHR

883◆2VB8wsVUoo 2017/05/26(金) 19:22:36.43ID:iCP5fMHR

884◆2VB8wsVUoo 2017/05/26(金) 19:22:53.75ID:iCP5fMHR

885◆2VB8wsVUoo 2017/05/26(金) 19:23:13.77ID:iCP5fMHR

886◆2VB8wsVUoo 2017/05/26(金) 19:23:33.54ID:iCP5fMHR

887132人目の素数さん2017/05/26(金) 20:39:05.55ID:f/rWqJk9
>>874
意味がわかりません

888132人目の素数さん2017/05/26(金) 20:44:13.38ID:vGWNqWlK
>>857
君は論理学を学べ

889◆2VB8wsVUoo 2017/05/26(金) 21:18:08.57ID:iCP5fMHR
★★★数学徒は馬鹿板をしない生活を送るべき。大脳が腐るのでサッサとヤメレ。★★★


890◆2VB8wsVUoo 2017/05/26(金) 23:54:16.57ID:iCP5fMHR

891◆2VB8wsVUoo 2017/05/26(金) 23:54:38.41ID:iCP5fMHR

892◆2VB8wsVUoo 2017/05/26(金) 23:55:01.17ID:iCP5fMHR

893◆2VB8wsVUoo 2017/05/26(金) 23:55:24.44ID:iCP5fMHR

894◆2VB8wsVUoo 2017/05/26(金) 23:55:47.34ID:iCP5fMHR

895◆2VB8wsVUoo 2017/05/26(金) 23:56:09.54ID:iCP5fMHR

896◆2VB8wsVUoo 2017/05/26(金) 23:56:32.48ID:iCP5fMHR

897◆2VB8wsVUoo 2017/05/26(金) 23:56:57.08ID:iCP5fMHR

898◆2VB8wsVUoo 2017/05/26(金) 23:57:25.73ID:iCP5fMHR

899◆2VB8wsVUoo 2017/05/26(金) 23:57:48.49ID:iCP5fMHR

900132人目の素数さん2017/05/27(土) 00:41:34.36ID:5gHn2hKp
>>858
事故解決した

901132人目の素数さん2017/05/27(土) 05:39:21.32ID:jtTEPc+K
>>900
詳しく

902◆2VB8wsVUoo 2017/05/27(土) 08:03:11.78ID:DdsIhcq+

903◆2VB8wsVUoo 2017/05/27(土) 08:03:31.81ID:DdsIhcq+

904◆2VB8wsVUoo 2017/05/27(土) 08:03:52.27ID:DdsIhcq+

905◆2VB8wsVUoo 2017/05/27(土) 08:04:14.71ID:DdsIhcq+

906◆2VB8wsVUoo 2017/05/27(土) 08:04:39.78ID:DdsIhcq+

907◆2VB8wsVUoo 2017/05/27(土) 08:05:02.56ID:DdsIhcq+

908◆2VB8wsVUoo 2017/05/27(土) 08:05:24.65ID:DdsIhcq+

909◆2VB8wsVUoo 2017/05/27(土) 08:05:46.16ID:DdsIhcq+

910◆2VB8wsVUoo 2017/05/27(土) 08:06:07.40ID:DdsIhcq+

911◆2VB8wsVUoo 2017/05/27(土) 08:06:27.83ID:DdsIhcq+

912132人目の素数さん2017/05/27(土) 18:58:09.48ID:ZRyWrIJx
自然数nに対してn^2+1の約数の個数をnの関数として表すことって出来ますか?

913132人目の素数さん2017/05/27(土) 20:21:16.27ID:+7l0JX5+
>>912
できない

914132人目の素数さん2017/05/27(土) 20:36:05.35ID:6VSlafP7
nの関数になっとるじゃん

915132人目の素数さん2017/05/27(土) 22:05:37.68ID:5gHn2hKp
>>901
やっぱりよくわからん

916132人目の素数さん2017/05/27(土) 23:12:15.78ID:bzvJBG38
まあまあわかるならいいじゃん

917132人目の素数さん2017/05/27(土) 23:16:18.23ID:iVfiq9oz
整数関数やな

918132人目の素数さん2017/05/27(土) 23:50:38.71ID:0kxgeFJj
>>821

Pythonのプログラムを作成しました。

↓は、行列のサイズが 10 の場合の結果です

分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

919◆2VB8wsVUoo 2017/05/28(日) 00:57:45.67ID:XNCQoRuM

920◆2VB8wsVUoo 2017/05/28(日) 00:58:07.98ID:XNCQoRuM

921◆2VB8wsVUoo 2017/05/28(日) 00:58:30.88ID:XNCQoRuM

922◆2VB8wsVUoo 2017/05/28(日) 00:58:51.69ID:XNCQoRuM

923◆2VB8wsVUoo 2017/05/28(日) 00:59:13.75ID:XNCQoRuM

924◆2VB8wsVUoo 2017/05/28(日) 00:59:41.77ID:XNCQoRuM

925◆2VB8wsVUoo 2017/05/28(日) 01:00:08.23ID:XNCQoRuM

926◆2VB8wsVUoo 2017/05/28(日) 01:00:31.44ID:XNCQoRuM

927◆2VB8wsVUoo 2017/05/28(日) 01:00:57.42ID:XNCQoRuM

928◆2VB8wsVUoo 2017/05/28(日) 01:01:23.93ID:XNCQoRuM

929132人目の素数さん2017/05/28(日) 11:11:43.99ID:XczsstMr
猫荒らし二世

930◆2VB8wsVUoo 2017/05/28(日) 11:28:35.86ID:XNCQoRuM

931◆2VB8wsVUoo 2017/05/28(日) 12:04:01.80ID:XNCQoRuM

932◆2VB8wsVUoo 2017/05/28(日) 12:04:20.11ID:XNCQoRuM

933◆2VB8wsVUoo 2017/05/28(日) 12:04:37.67ID:XNCQoRuM

934◆2VB8wsVUoo 2017/05/28(日) 12:04:54.29ID:XNCQoRuM

935◆2VB8wsVUoo 2017/05/28(日) 12:05:12.16ID:XNCQoRuM

936◆2VB8wsVUoo 2017/05/28(日) 12:05:29.48ID:XNCQoRuM

937◆2VB8wsVUoo 2017/05/28(日) 12:05:47.40ID:XNCQoRuM

938◆2VB8wsVUoo 2017/05/28(日) 12:06:06.32ID:XNCQoRuM

939◆2VB8wsVUoo 2017/05/28(日) 12:06:25.07ID:XNCQoRuM

940132人目の素数さん2017/05/28(日) 13:11:08.26ID:LyMoWcvE
>>901
釣りだろ

941◆2VB8wsVUoo 2017/05/28(日) 13:16:16.43ID:XNCQoRuM
★★★数学徒は馬鹿板をしない生活を送るべき。大脳が腐るのでサッサとヤメレ。★★★


942132人目の素数さん2017/05/28(日) 13:18:24.81ID:aW3LtE59
ここのところずいぶん繁殖してるな
やっぱりカビの一種なんだな

943132人目の素数さん2017/05/28(日) 13:52:17.77ID:GVTW+rS+
猫二世(偽)

944◆2VB8wsVUoo 2017/05/28(日) 13:56:26.62ID:XNCQoRuM

945◆2VB8wsVUoo 2017/05/28(日) 13:56:47.10ID:XNCQoRuM

946◆2VB8wsVUoo 2017/05/28(日) 13:57:06.23ID:XNCQoRuM

947◆2VB8wsVUoo 2017/05/28(日) 13:57:25.99ID:XNCQoRuM

948◆2VB8wsVUoo 2017/05/28(日) 13:57:44.87ID:XNCQoRuM

949◆2VB8wsVUoo 2017/05/28(日) 13:58:05.10ID:XNCQoRuM

950◆2VB8wsVUoo 2017/05/28(日) 13:58:24.71ID:XNCQoRuM

951◆2VB8wsVUoo 2017/05/28(日) 13:58:45.80ID:XNCQoRuM

952◆2VB8wsVUoo 2017/05/28(日) 13:59:08.73ID:XNCQoRuM

953◆2VB8wsVUoo 2017/05/28(日) 13:59:30.29ID:XNCQoRuM

954132人目の素数さん2017/05/28(日) 15:19:15.43ID:GVTW+rS+
コテは譲ってもらっても才能は譲ってもらえませんでした

955◆2VB8wsVUoo 2017/05/28(日) 15:31:55.27ID:XNCQoRuM
★★★数学徒は馬鹿板をしない生活を送るべき。大脳が腐るのでサッサとヤメレ。★★★


956132人目の素数さん2017/05/28(日) 17:15:30.91ID:GVTW+rS+
苗は無能

957132人目の素数さん2017/05/28(日) 18:44:47.34ID:AU8T/ZeY
実数におけるルベーグ測度0の集合の濃度は高々可算ですか?

958132人目の素数さん2017/05/28(日) 19:56:29.16ID:1a7yQ8sK
各一点集合{a}を考えてから聞こうか

959132人目の素数さん2017/05/28(日) 19:58:35.54ID:1a7yQ8sK
あ、すまん{E⊆R|μ(E)=0}の濃度と間違えたわ

960◆2VB8wsVUoo 2017/05/28(日) 20:07:23.98ID:XNCQoRuM
★★★数学徒は馬鹿板をしない生活を送るべき。大脳が腐るのでサッサとヤメレ。★★★


961132人目の素数さん2017/05/28(日) 20:41:06.37ID:AU8T/ZeY
>>957
自己解決しました

962132人目の素数さん2017/05/28(日) 20:45:26.05ID:AU8T/ZeY
>>959
アホは答えるな

963132人目の素数さん2017/05/28(日) 20:58:23.29ID:4L8K4kDK
平行移動したらいっぱいあるだろ

964132人目の総数さん2017/05/28(日) 21:41:53.86ID:rvVlsfSp
https://imgur.com/a/3UpWk
関数の問題です みなさんならおそらくすぐかと思うのですが解説もいただけると助かります

965132人目の素数さん2017/05/28(日) 21:50:09.73ID:BRrQjSwx
なぜ数学板で聞こうと思った?

966132人目の素数さん2017/05/28(日) 21:52:34.15ID:kDiZW1pV
>>963
何言ってんだお前?
何の問題で何を平行移動したらどうなるのか書けやボケ

967132人目の素数さん2017/05/28(日) 22:16:28.15ID:q0OCKZ6d
てめえで考えろ、ボケ

968132人目の素数さん2017/05/28(日) 22:18:34.98ID:TMfN9Jka
うわ、小者っぽい台詞

969132人目の素数さん2017/05/28(日) 22:48:42.76ID:tbFet7Af
ゼータ関数についての質問です。

分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚
分からない問題はここに書いてね426 [無断転載禁止]©2ch.net	->画像>62枚

どうしてコーシーの積分定理を用いると、2πiの点を含まない積分路の積分が等しいのか?(一枚目コーシーの積分定理により〜のところ)

定義式から明らかに積分は収束する←どのように明らかに収束するのか(二枚目)

どうして(明らかに)正則だといえるか

以上3点どなたかよろしくお願いします。

970132人目の素数さん2017/05/28(日) 22:55:54.89ID:RI7BDxy/
四元数の微分って定義できますか?
複素関数の微分みたいにいい感じな結果出ますか?

971132人目の素数さん2017/05/28(日) 22:56:33.93ID:q0OCKZ6d
GGRKS

972132人目の素数さん2017/05/29(月) 01:20:14.11ID:4z/C8Ei9
(x+2y-9)^2=x^2+4xy+4y^2-18x-36y+81 展開なのですが途中式が分かりません。

973132人目の素数さん2017/05/29(月) 01:47:16.36ID:parv92V9
>>963
おい
何を平行移動するんだ?
はよ答えろや

974132人目の素数さん2017/05/29(月) 01:56:23.87ID:fB2bjA3v
>>973
任意の整合的な公理系τは少なくとも一つのモデルを持つことを既知とします
このとき、τの任意のモデルに対してφが真であれば、τからφがLKにおいて証明可能であることを示せ、という問題がわかりません

975132人目の素数さん2017/05/29(月) 02:00:01.59ID:Qzwe8PA0
>>963>>874と同一人物だろう
何が楽しいのか分からないけど、そういう遊びなんじゃないか

976◆2VB8wsVUoo 2017/05/29(月) 03:58:12.11ID:bj0Vx5WD

977◆2VB8wsVUoo 2017/05/29(月) 03:58:32.22ID:bj0Vx5WD

978◆2VB8wsVUoo 2017/05/29(月) 03:58:52.42ID:bj0Vx5WD

979◆2VB8wsVUoo 2017/05/29(月) 03:59:11.61ID:bj0Vx5WD

980◆2VB8wsVUoo 2017/05/29(月) 03:59:31.29ID:bj0Vx5WD

981◆2VB8wsVUoo 2017/05/29(月) 03:59:51.61ID:bj0Vx5WD

982◆2VB8wsVUoo 2017/05/29(月) 04:00:12.52ID:bj0Vx5WD

983◆2VB8wsVUoo 2017/05/29(月) 04:00:33.26ID:bj0Vx5WD

984◆2VB8wsVUoo 2017/05/29(月) 04:01:04.04ID:bj0Vx5WD

985◆2VB8wsVUoo 2017/05/29(月) 04:01:26.81ID:bj0Vx5WD

986132人目の素数さん2017/05/29(月) 08:04:51.77ID:KzpmPx85
分からない問題はここに書いてね427 [無断転載禁止]©2ch.net
http://rio2016.2ch.net/test/read.cgi/math/1496012676/

987◆2VB8wsVUoo 2017/05/29(月) 08:16:31.29ID:bj0Vx5WD

988◆2VB8wsVUoo 2017/05/29(月) 08:16:52.40ID:bj0Vx5WD

989◆2VB8wsVUoo 2017/05/29(月) 08:17:11.26ID:bj0Vx5WD

990◆2VB8wsVUoo 2017/05/29(月) 08:17:33.40ID:bj0Vx5WD

991◆2VB8wsVUoo 2017/05/29(月) 08:17:54.51ID:bj0Vx5WD

992◆2VB8wsVUoo 2017/05/29(月) 08:18:16.50ID:bj0Vx5WD

993◆2VB8wsVUoo 2017/05/29(月) 08:18:38.87ID:bj0Vx5WD

994◆2VB8wsVUoo 2017/05/29(月) 08:18:39.66ID:bj0Vx5WD

995◆2VB8wsVUoo 2017/05/29(月) 08:19:00.27ID:bj0Vx5WD

996◆2VB8wsVUoo 2017/05/29(月) 08:19:24.90ID:bj0Vx5WD

997◆2VB8wsVUoo 2017/05/29(月) 08:19:47.06ID:bj0Vx5WD

998◆2VB8wsVUoo 2017/05/29(月) 08:20:08.96ID:bj0Vx5WD

999◆2VB8wsVUoo 2017/05/29(月) 08:20:34.66ID:bj0Vx5WD

1000◆2VB8wsVUoo 2017/05/29(月) 08:21:07.27ID:bj0Vx5WD

mmp
lud20191001181505ca
このスレへの固定リンク: http://5chb.net/r/math/1493648300/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

TOPへ TOPへ  

このエントリをはてなブックマークに追加現在登録者数177 ブックマークへ


全掲示板一覧 この掲示板へ 人気スレ | >50 >100 >200 >300 >500 >1000枚 新着画像

 ↓「分からない問題はここに書いてね426 [無断転載禁止]©2ch.net ->画像>62枚 」を見た人も見ています:
分からない問題はここに書いてね456
分からない問題はここに書いてね456
分からない問題はここに書いてね436
分からない問題はここに書いてね416
分からない問題はここに書いてね446
分からない問題はここに書いてね420
分からない問題はここに書いてね453
分からない問題はここに書いてね447
分からない問題はここに書いてね435
分からない問題はここに書いてね431
分からない問題はここに書いてね427
分からない問題はここに書いてね430
分からない問題はここに書いてね434
分からない問題はここに書いてね419
分からない問題はここに書いてね432
分からない問題はここに書いてね451
分からない問題はここに書いてね418
分からない問題はここに書いてね424
分からない問題はここに書いてね433
分からない問題はここに書いてね443
分からない問題はここに書いてね439
分からない問題はここに書いてね450
分からない問題はここに書いてね478
分からない問題はここに書いてね438
分からない問題はここに書いてね449
分からない問題はここに書いてね445
分からない問題はここに書いてね442
分からない問題はここに書いてね440
分からない問題はここに書いてね455
分からない問題はここに書いてね417
分からない問題はここに書いてね428
分からない問題はここに書いてね448
分からない問題はここに書いてね452
分からない問題はここに書いてね437
分からない問題はここに書いてね454
分からない問題はここに書いてね422
分からない問題はここに書いてね441
分からない問題はここに書いてね444
分からない問題はここに書いてね429
分からない問題はここに書いてね459
分からない問題はここに書いてね457
分からない問題はここに書いてね415
分からない問題はここに書いてね460
分からない問題はここに書いてね421
分からない問題はここに書いてね461
分からない問題はここに書いてね425
分からない問題はここに書いてね465
分からない問題はここに書いてね462
分からない問題はここに書いてね458
分からない問題はここに書いてね463
分からない問題はここに書いてね464
分からない問題はここに書いてね423
分かった問題はここに書いてね2
分からない問題はここに書いてね 466
分からない問題はここに書いてね357
分からない問題はここに書いてね388
分からない問題はここに書いてね389
分からない問題はここに書いてね 470
分からない問題はここに書いてね 470
分からない問題はここに書いてね 468
分からない問題はここに書いてね 472
分からない問題はここに書いてね 467
分からない問題はここに書いてね 469
分からない問題はここに書いてね 471
分からない問題はここに書いてね211
14:37:17 up 14 days, 23:45, 7 users, load average: 9.46, 9.70, 9.56

in 0.033262968063354 sec @0.033262968063354@0b7 on 120504